985 resultados para Signal-dependent experimentation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent studies have provided evidence that breast cancer susceptibility gene products (Brca1 and Brca2) suppress cancer, at least in part, by participating in DNA damage signaling and DNA repair. Brca1 is hyperphosphorylated in response to DNA damage and co-localizes with Rad51, a protein involved in homologous-recombination, and Nbs1·Mre11·Rad50, a complex required for both homologous-recombination and nonhomologous end joining repair of damaged DNA. Here, we report that there is a qualitative difference in the phosphorylation states of Brca1 between ionizing radiation (IR) and UV radiation. Brca1 is phosphorylated at Ser-1423 and Ser-1524 after IR and UV; however, Ser-1387 is specifically phosphorylated after IR, and Ser-1457 is predominantly phosphorylated after UV. These results suggest that different types of DNA-damaging agents might signal to Brca1 in different ways. We also provide evidence that the rapid phosphorylation of Brca1 at Ser-1423 and Ser-1524 after IR (but not after UV) is largely ataxia telangiectasia mutated (ATM) kinase-dependent. The overexpression of catalytically inactive ATM and Rad3 related (ATR) kinase inhibited the UV-induced phosphorylation of Brca1 at these sites, indicating that ATR controls Brca1 phosphorylation in vivo after the exposure of cells to UV light. Moreover, ATR associates with Brca1; ATR and Brca1 foci co-localize both in cells synchronized in S phase and after exposure of cells to DNA-damaging agents. ATR can itself phosphorylate the region of Brca1 phosphorylated by ATM (Ser-Gln cluster in the C terminus of Brca1, amino acids 1241-1530). However, there are additional uncharacterized ATR phosphorylation site(s) between residues 521 and 757 of Brca1. Taken together, our results support a model in which ATM and ATR act in parallel but somewhat overlapping pathways of DNA damage signaling but respond primarily to different types of DNA lesion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There is evidence that ATM plays a wider role in intracellular signalling in addition to DNA damage recognition and cell cycle control, In this report we show that activation of the EGF receptor is defective in ataxia-telangiectasia (A-T) cells and that sustained stimulation of cells with EGF downregulates ATM protein in control cells but not in A-T cells expressing mutant protein, Concomitant with the downregulation of ATM, DNA-binding activity of the transcription factor Spl decreased in controls after EGF treatment but increased from a lower basal level in A-T cells to that in untreated control cells, Mutation in two Spl consensus sequences in the ATM promoter reduced markedly the capacity of the promoter to support luciferase activity in a reporter assay. Overexpression of anti-sense ATM cDNA in control cells decreased the;basal level of Spl, which in turn was increased by subsequent treatment of cells with EGF, similar to that observed in,A-T cells. On the other hand full-length ATM cDNA increased the basal level of Spl binding in A-T cells, and in response to EGF Spl binding decreased, confirming that this is an ATR I-dependent process. Contrary to that observed in control cells there was no radiation-induced change in ATM protein in EGF-treated A-T cells and likewise no alteration in Spl binding activity. The results demonstrate that EGF-induced downregulation of ATM (mutant) protein in A-T cells is defective and this appears to be due to less efficient EGFR activation and abnormal Spl regulation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The NS5 protein of the flavivirus Kunjin (KUN) contains conserved sequence motifs characteristic of RNA-dependent RNA polymerase (RdRp) activity. To investigate this activity in vitro, recombinant NS5 proteins with C-terminal (NS5CHis) and N-terminal (NS5NHis) hexahistidine tags were produced in baculovirus-infected insect cells and purified to near homogeneity by nickel affinity chromatography. Purified NS5CHis exhibited RdRp activity with both specific (9 kb KUN replicon) and non-specific (8.3 kb Semliki Forest virus replicon) RNA templates; this activity did not require the presence of additional viral and/or cellular cofactors. RdRp activity of purified NS5NHis protein was reduced in comparison to NS5CHis, while purified NS5NHis incorporating a GDD -> GVD mutation within the polymerase active site (NS5GVD) lacked RdRp activity. RNase A digestion of the RdRp reaction products indicated that they were double-stranded and of a similar size to the KUN replicative form produced in Vero cells, thus demonstrating that the KUN NS5 protein has an intrinsic, albeit low and non-specific RdRp activity in vitro, similar to that reported for recombinant RdRp of other flaviviruses. However, in contrast to RNA polymerases of other Flavivirus species, purified KUN NS5 polymerase produced a single, full-length replicon RNA product, thus demonstrating efficient processivity. (C) 2001 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present an ultra-high bandwidth all-optical digital signal regeneration device concept utilising non-degenerate parametric interaction in a one-dimensional waveguide. Performance is analysed in terms of re-amplification, re-timing, and re-shaping (including centre frequency correction) of time domain multiplexed signals. Bandwidths of 10-100 THz are achievable. (C) 2001 Published by Elsevier Science B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper is concerned with the design of a Ku-band active transmit-array module of transistor amplifiers excited by either a pyramidal horn or a patch array Optimal distances between the active transmit array and the signal-launching:receiving device, which is either a passive corporate-fed array or a horn, are determined to maximise the power gain at a design frequency: Having established these conditions, the complete structure is investigated in terms of operational bandwidth and near-field and far-field distributions measured at the output side of the transmit array, The experimental results show that the use of a corporate-fed array as an illuminating/receiving device gives higher gain and significantly larger operational bandwidth, An explanation for this behavior is sought.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The fifth increased branching ramosus (rms) mutant, rms5, from pea (Pisum sativum), is described here for phenotype and grafting responses with four other rms mutants. Xylem sap zeatin riboside concentration and shoot auxin levels in rms5 plants have also been compared with rms1 and wild type (WT). Rms1 and Rms5 appear to act closely at the biochemical or cellular level to control branching, because branching was inhibited in reciprocal epicotyl grafts between rms5 or rms1 and WT plants, but not inhibited in reciprocal grafts between rms5 and rmsl seedlings. The weakly transgressive or slightly additive phenotype of the rmsl rms5 double mutant provides further evidence for this interaction. Like rms1, rms5 rootstocks have reduced xylem sap cytokinin concentrations, and rms5 shoots do not appear deficient in indole-3-acetic acid or 4-chloroindole-3-acetic acid. Rms1 and Rms5 are similar in their interaction with other Rms genes. Reciprocal grafting studies with rmsl, rms2, and rms5, together with the fact that root xylem sap cytokinin concentrations are reduced in rms1 and rms5 and elevated in rms2 plants, indicates that Rms1 and Rms5 may control a different pathway than that controlled by Rms2. Our studies indicate that Rms1 and Rms5 may regulate a novel graft-transmissible signal involved in the control of branching.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Estimates of Wolbachia density in the eggs, testes and whole flies of drosophilid hosts have been unable to predict the lack of cytoplasmic incompatibility (CI) expression in so-called mod(-) variants. Consequently, the working hypothesis has been that CI expression, although related to Wolbachia density, is also governed by unknown factors that are influenced by both host and bacterial genomes. Here, we compare the behaviour of the mod(-) over-replicating Wolbachia popcorn strain in its native Drosophila melanogaster host to the same strain transinfected into a novel host, namely Drosophila simulans. We report that (i) the popcorn strain is a close relative of other D. melanogaster infections, (ii) the mod(-) status of popcorn in D. melanogaster appears to result from its inability to colonize sperm bundles, (iii) popcorn is present in the bundles in D. simulans and induces strong CI expression, which demonstrates that the bacterial strain does not lack the genetic machinery for inducing CI and that there is host-species-specific control over Wolbachia tissue tropism, and (iv) infection of sperm bundles by the mod(-) D. simulans wCof strain indicates that there are several independent routes by which a strain can be a CI non-expressor.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Breast cancer is the most common form of cancer among women and the identification of markers to discriminate tumorigenic from normal cells, as well as the different stages of this pathology, is of critical importance. Two-dimensional electrophoresis has been used before for studying breast cancer, but the progressive completion of human genomic sequencing and the introduction of mass spectrometry, combined with advanced bioinformatics for protein identification, have considerably increased the possibilities for characterizing new markers and therapeutic targets. Breast cancer proteomics has already identified markers of potential clinical interest (such as the molecular chaperone 14-3-3 sigma) and technological innovations such as large scale and high throughput analysis are now driving the field. Methods in functional proteomics have also been developed to study the intracellular signaling pathways that underlie the development of breast cancer. As illustrated with fibroblast growth factor-2, a mitogen and motogen factor for breast cancer cells, proteomics is a powerful approach to identify signaling proteins and to decipher the complex signaling circuitry involved in tumor growth. Together with genomics, proteomics is well on the way to molecularly characterizing the different types of breast tumor, and thus defining new therapeutic targets for future treatment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent studies have provided evidence that breast cancer susceptibility gene products (Brca1 and Brca2) suppress cancer, at least in part, by participating in DNA damage signaling and DNA repair. Brca1 is hyperphosphorylated in response to DNA damage and co-localizes with Rad51, a protein involved in homologous-recombination, and Nbs1.Mre11.Rad50, a complex required for both homologous-recombination and nonhomologous end joining repair of damaged DNA. Here, we report that there is a qualitative difference in the phosphorylation states of Brca1 between ionizing radiation (IR) and UV radiation. Brca1 is phosphorylated at Ser-1423 and Ser-1524 after IR and W; however, Ser-1387 is specifically phosphorylated after IR, and Ser-1457 is predominantly phosphorylated after W. These results suggest that different types of DNA-damaging agents might signal to Brca1 in different ways. We also provide evidence that the rapid phosphorylation of Brca1 at Ser-1423 and Ser-1524 after IR (but not after W) is largely ataxia telangiectasia mutated (ATM) kinase-dependent. The overexpression of catalytically inactive ATM and Rad3 related (ATR) kinase inhibited the UV-induced phosphorylation of Brca1 at these sites, indicating that ATR controls Brca1 phosphorylation in vivo after the exposure of cells to UV light. Moreover, ATR associates with Brca1; ATR and Brca1 foci co-localize both in cells synchronized in S phase and after exposure of cells to DNA-damaging agents. ATR can itself phosphorylate the region of Brca1 phosphorylated by ATM (Ser-Gln cluster in the C terminus of Brca1, amino acids 1241-1530), However, there are additional uncharacterized ATR phosphorylation site(s) between residues 521 and 757 of Brca1, Taken together, our results support a model in which ATM and ATR act in parallel but somewhat overlapping pathways of DNA damage signaling but respond primarily to different types of DNA lesion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The EphA4 receptor tyrosine kinase regulates the formation of the corticospinal tract (CST), a pathway controlling voluntary movements, and of the anterior commissure (AC), connecting the neocortical temporal robes. To study EphA4 kinase signaling in these processes, we generated mice expressing mutant EphA4 receptors either lacking kinase activity or with severely downregulated kinase activity. We demonstrate that EphA4 is required for CST formation as a receptor for which it requires an active kinase domain. In contrast, the formation of the AC is rescued by kinase-dead EphA4, suggesting that in this structure EphA4 acts as a ligand for which its kinase activity is not required. Unexpectedly, the cytoplasmic sterile-alpha motif (SAM) domain is not required for EphA4 functions. Our findings establish both kinase-dependent and kinase-independent functions of EphA4 in the formation of major axon tracts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have examined the requirement for Ca2+ in the signaling and trafficking pathways involved in insulin-stimulated glucose uptake in 3T3-LI adipocytes. Chelation of intracellular Ca2+, using 1,2-bis (o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid tetra (acetoxymethyl) ester (BAPTA-AM), resulted in >95% inhibition of insulin-stimulated glucose uptake. The calmodulin antagonist, W13, inhibited insulin-stimulated glucose uptake by 60%. Both BAPTA-AM and W13 inhibited Akt phosphorylation by 70-75%. However, analysis of insulin-dose response curves indicated that this inhibition was not sufficient to explain the effects of BAPTA-AM and W13 on glucose uptake. BAPTA-AM inhibited insulin-stimulated translocation of GLUT4 by 50%, as determined by plasma membrane lawn assay and subcellular fractionation. In contrast, the insulin-stimulated appearance of HA-tagged GLUT4 at the cell surface, as measured by surface binding, was blocked by BAPTA/AM.. While the ionophores A23187 or ionomycin prevented the inhibition of Akt phosphorylation and GLUT4 translocation by BAPTA-AM, they did not overcome the inhibition of glucose transport. Moreover, glucose uptake of cells pretreated with insulin followed by rapid cooling to 4 degreesC, to promote cell surface expression of GLUT4 and prevent subsequent endocytosis, was inhibited specifically by BAPTA-AM. This indicates that inhibition of glucose uptake by BAPTA-AM is independent of both trafficking and signal transduction. These data indicate that Ca2+ is involved in at least two different steps of the insulin-dependent recruitment of GLUT4 to the plasma membrane. One involves the translocation step. The second involves the fusion of GLUT4 vesicles with the plasma membrane. These data are consistent with the hypothesis that Ca2+/cahnodulin plays a fundamental role in eukaryotic vesicle docking and fusion. Finally, BAPTA-AM may inhibit the activity of the facilitative transporters by binding directly to the transporter itself.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

GLUT4 is a mammalian facilitative glucose transporter that is highly expressed in adipose tissue and striated muscle. In response to insulin, GLUT4 moves from intracellular storage areas to the plasma membrane, thus increasing cellular glucose uptake. While the verification of this 'translocation hypothesis' (Cushman SW. Wardzala LJ. J Biol Chem 1980;255: 4758-4762 and Suzuki K, Kono T. Proc Natl Acad Sci 1980;77: 2542-2545) has increased our understanding of insulin-regulated glucose transport, a number of fundamental questions remain unanswered. Where is GLUT4 stored within the basal cell? How does GLUT4 move to the cell surface and what mechanism does insulin employ to accelerate this process) Ultimately we require a convergence of trafficking studies with research in signal transduction. However, despite more than 30 years of intensive research we have still not reached this point. The problem is complex, involving at least two separate signal transduction pathways which feed into what appears to be a very dynamic sorting process. Below we discuss some of these complexities and highlight new data that are bringing us closer to the resolution of these questions.