955 resultados para SPECTRAL DISPERSION
Resumo:
The progression to end-stage renal failure is independent of the initial pathogenic mechanism. Metabolic acidosis is a common consequence of chronic renal failure that results from inadequate ammonium excretion and decreased tubular bicarbonate reabsorption. Protoporphyrin IX (PpIX) is the immediate metabolic precursor of the heme molecule. The purpose of this study was to evaluate the levels of erythrocytes protoporphyrin IX at an animal model during progressive renal disease. A total of 36 eight-week-old male Wistar rats were divided into six groups: Normal, 4 and 8 weeks after 5/6 nephrectomy (NX). Renal function was evaluated by creatinine clearance and plasma creatinine levels. The autofluorescence of erythrocytes porphyrin of healthy and NX rats was analyzed using fluorescence spectroscopy. Emission spectra were obtained by exciting the samples at 405 nm. Significant differences between normal and NX rats autofluorescence shape occurred in the 600-700 nm spectral region. A correlation was observed between emission band intensity at 635 nm and progression of renal disease.
Resumo:
Monte Carlo simulation and quantum mechanics calculations based on the INDO/CIS and TD-DFT methods were utilized to study the solvatochromic shift of benzophenone when changing the environment from normal water to supercritical (P = 340.2 atm and T = 673 K) condition. Solute polarization increases the dipole moment of benzophenone, compared to gas phase, by 88 and 35% in normal and supercritical conditions, giving the in-solvent dipole value of 5.8 and 4.2 D, respectively. The average number of solute-solvent hydrogen bonds was analyzed, and a large decrease of 2.3 in normal water to only 0.8 in the supercritical environment was found. By using these polarized models of benzophenone in the two different conditions of water, we performed MC simulations to generate statistically uncorrelated configurations of the solute surrounded by the solvent molecules and subsequent quantum mechanics calculations on these configurations. When changing from normal to supercritical water environment, INDO/CIS calculations explicitly considering all valence electrons of the 235 solvent water molecules resulted in a solvatochromic shift of 1425 cm(-1) for the most intense transition of benzophenone, that is, slightly underestimated in comparison with the experimentally inferred result of 1700 cm(-1). TD-B3LYP/6-311+G(2d,p) calculations on the same configurations but with benzophenone electrostatically embedded in the 320 water molecules resulted in a solvatochromic shift of 1715 cm(-1) for this transition, in very good agreement with the experimental result. When using the unpolarized model of the benzophenone, this calculated solvatochromic shift was only 640 cm(-1). Additional calculations were also made by using BHandHLYP/6-311+G(2d,p) to analyze the effect of the asymptotic decay of the exchange functional. This study indicates that, contrary to the general expectation, there is a sizable solute polarization even in the low-density regime of supercritical condition and that the inclusion of this polarization is important for a reliable description of the spectral shifts considered here.
Resumo:
The eigenvalue densities of two random matrix ensembles, the Wigner Gaussian matrices and the Wishart covariant matrices, are decomposed in the contributions of each individual eigenvalue distribution. It is shown that the fluctuations of all eigenvalues, for medium matrix sizes, are described with a good precision by nearly normal distributions.
Resumo:
We show that single and multislit experiments involving matter waves may be constructed to assess dispersively generated correlations between the position and momentum of a single free particle. These correlations give rise to position dependent phases which develop dynamically as a result of dispersion and may play an important role in the interference patterns. To the extent that initial transverse coherence is preserved throughout the proposed diffraction setup, such interference patterns are noticeably different from those of a classical dispersion free wave. (c) 2007 Published by Elsevier B.V.
Resumo:
We report on the photophysical properties of single-walled carbon nanotube (SWNT) suspensions In toluene solutions of poly[9,9-dioctylfluorenyl-2,7-diyl](PFO). Steady-state and time-resolved photoluminescence spectroscopy in the near-infrared and visible spectral regions are used to study the interaction of the dispersed SWNTs with the wrapped polymer. Molecular dynamics simulations of the PFO-SWNT hybrids in toluene were carried out to evaluate the energetics of different wrapping geometries. The simulated fluorescence spectra in the visible region were obtained by the quantum chemical ZINDO-CI method, using a sampling of structures obtained from the dynamics trajectories. The tested schemes consider polymer chains aligned along the nanotube axis, where chirality has a minimal effect, or forming helical structures, where a preference for high chiral angles is evidenced. Moreover, toluene affects the polymer structure favoring the helical conformation. Simulations show that the most stable hybrid system is the PFO-wrapped (8,6) nanotube, in agreement with the experimentally observed selectivity.
Resumo:
In this paper, we present a mathematically rigorous quantum-mechanical treatment of a one-dimensional motion of a particle in the Calogero potential alpha x(-2). Although the problem is quite old and well studied, we believe that our consideration based on a uniform approach to constructing a correct quantum-mechanical description for systems with singular potentials and/or boundaries, proposed in our previous works, adds some new points to its solution. To demonstrate that a consideration of the Calogero problem requires mathematical accuracy, we discuss some `paradoxes` inherent in the `naive` quantum-mechanical treatment. Using a self-adjoint extension method, we construct and study all possible self-adjoint operators (self-adjoint Hamiltonians) associated with a formal differential expression for the Calogero Hamiltonian. In particular, we discuss a spontaneous scale-symmetry breaking associated with self-adjoint extensions. A complete spectral analysis of all self-adjoint Hamiltonians is presented.
Resumo:
We present a mathematically rigorous quantum-mechanical treatment of a one-dimensional non-relativistic motion of a particle in the potential field V(x) = g(1)x(-1) + g(2)x(-2), x is an element of R(+) = [0, infinity). For g(2) > 0 and g(1) < 0, the potential is known as the Kratzer potential V(K)(x) and is usually used to describe molecular energy and structure, interactions between different molecules and interactions between non-bonded atoms. We construct all self-adjoint Schrodinger operators with the potential V(x) and represent rigorous solutions of the corresponding spectral problems. Solving the first part of the problem, we use a method of specifying self-adjoint extensions by (asymptotic) self-adjoint boundary conditions. Solving spectral problems, we follow Krein`s method of guiding functionals. This work is a continuation of our previous works devoted to the Coulomb, Calogero and Aharonov-Bohm potentials.
Resumo:
In this paper we extend the results presented in (de Ponte, Mizrahi and Moussa 2007 Phys. Rev. A 76 032101) to treat quantitatively the effects of reservoirs at finite temperature in a bosonic dissipative network: a chain of coupled harmonic oscillators whatever its topology, i.e., whichever the way the oscillators are coupled together, the strength of their couplings and their natural frequencies. Starting with the case where distinct reservoirs are considered, each one coupled to a corresponding oscillator, we also analyze the case where a common reservoir is assigned to the whole network. Master equations are derived for both situations and both regimes of weak and strong coupling strengths between the network oscillators. Solutions of these master equations are presented through the normal ordered characteristic function. These solutions are shown to be significantly involved when temperature effects are considered, making difficult the analysis of collective decoherence and dispersion in dissipative bosonic networks. To circumvent these difficulties, we turn to the Wigner distribution function which enables us to present a technique to estimate the decoherence time of network states. Our technique proceeds by computing separately the effects of dispersion and the attenuation of the interference terms of the Wigner function. A detailed analysis of the dispersion mechanism is also presented through the evolution of the Wigner function. The interesting collective dispersion effects are discussed and applied to the analysis of decoherence of a class of network states. Finally, the entropy and the entanglement of a pure bipartite system are discussed.
Resumo:
This work investigates the two-photon absorption spectrum of perylene tetracarboxylic derivatives using the white-light continuum Z-scan technique. Perylene derivatives present relatively high two-photon absorption cross-section, which makes them attractive for applications in photonics. Because of the spectral resolution of the white-light continuum Z-scan, we were able to observe a well defined structure in the two-photon absorption spectrum, composed by two distinct peaks. These peaks, as well as the resonant enhancement of the nonlinearity, were modeled using the sum-over-states approach considering a four-level energy diagram with two final two-photon states. The existence of such states was confirmed using the response function formalism within the DFT framework. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
In this work, we investigate the control of the two-photon absorption process of a series of organic compounds via spectral phase modulation of the excitation pulse. We analyzed the effect of the pulse central wavelength on the control of the two-photon absorption process for each compound. Depending on the molecules` two-photon absorption position relative to the excitation pulse wavelength, different levels of coherent control were observed. By simulating the two-photon transition probability in molecular systems, taking into account the band structure and its positions, we could explain the experimental results trends. We observed that the intrapulse coherent interference plays an important role in the nonlinear process control besides just the pulse intensity modulation.
Resumo:
The spectral properties and phase diagram of the exactly integrable spin-1 quantum chain introduced by Alcaraz and Bariev are presented. The model has a U(1) symmetry and its integrability is associated with an unknown R-matrix whose dependence on the spectral parameters is not of a different form. The associated Bethe ansatz equations that fix the eigenspectra are distinct from those associated with other known integrable spin models. The model has a free parameter t(p). We show that at the special point t(p) = 1, the model acquires an extra U(1) symmetry and reduces to the deformed SU(3) Perk-Schultz model at a special value of its anisotropy q = exp(i2 pi/3) and in the presence of an external magnetic field. Our analysis is carried out either by solving the associated Bethe ansatz equations or by direct diagonalization of the quantum Hamiltonian for small lattice sizes. The phase diagram is calculated by exploring the consequences of conformal invariance on the finite-size corrections of the Hamiltonian eigenspectrum. The model exhibits a critical phase ruled by the c = 1 conformal field theory separated from a massive phase by first-order phase transitions.
Resumo:
We consider the issue of performing residual and local influence analyses in beta regression models with varying dispersion, which are useful for modelling random variables that assume values in the standard unit interval. In such models, both the mean and the dispersion depend upon independent variables. We derive the appropriate matrices for assessing local influence on the parameter estimates under different perturbation schemes. An application using real data is presented and discussed.
Resumo:
We introduce the notion of spectral flow along a periodic semi-Riemannian geodesic, as a suitable substitute of the Morse index in the Riemannian case. We study the growth of the spectral flow along a closed geodesic under iteration, determining its asymptotic behavior.
Resumo:
We consider a continuous path of bounded symmetric Fredholm bilinear forms with arbitrary endpoints on a real Hilbert space, and we prove a formula that gives the spectral flow of the path in terms of the spectral flow of the restriction to a finite codimensional closed subspace. We also discuss the case of restrictions to a continuous path of finite codimensional closed subspaces. As an application of the formula, we introduce the notion of spectral flow for a periodic semi-Riemannian geodesic, and we compute its value in terms of the Maslov index. (C) 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Resumo:
In this paper we discuss bias-corrected estimators for the regression and the dispersion parameters in an extended class of dispersion models (Jorgensen, 1997b). This class extends the regular dispersion models by letting the dispersion parameter vary throughout the observations, and contains the dispersion models as particular case. General formulae for the O(n(-1)) bias are obtained explicitly in dispersion models with dispersion covariates, which generalize previous results obtained by Botter and Cordeiro (1998), Cordeiro and McCullagh (1991), Cordeiro and Vasconcellos (1999), and Paula (1992). The practical use of the formulae is that we can derive closed-form expressions for the O(n(-1)) biases of the maximum likelihood estimators of the regression and dispersion parameters when the information matrix has a closed-form. Various expressions for the O(n(-1)) biases are given for special models. The formulae have advantages for numerical purposes because they require only a supplementary weighted linear regression. We also compare these bias-corrected estimators with two different estimators which are also bias-free to order O(n(-1)) that are based on bootstrap methods. These estimators are compared by simulation. (C) 2011 Elsevier B.V. All rights reserved.