963 resultados para RAY CRYSTAL-STRUCTURE
Resumo:
C16H15Br2O7.5, orthorhombic, P2(1)2(1)2 (no. 18), a = 18.483(2) angstrom, b = 9.413(1) angstrom, c = 10.072(1) angstrom, V = 1752.3 angstrom(3), Z = 4, R-gt(F) = 0.083, wR(ref)(F-2) = 0.202, T= 293 K.
Resumo:
Rhodanines (2-thio-4-oxothiazolidines) are synthetic small molecular weight organic molecules with diverse applications in biochemistry, medicinal chemistry, photochemistry, coordination chemistry and industry. The X-ray crystal structure determination of two rhodanine derivatives, namely (I), 3-aminorhodanine [3-amino-2-thio-4-oxothiazolidine], C3H4N2OS2, and (II) 3-methylrhodanine [3-methyl-2-thio-4-oxothiazolidine], C4H5NOS2, have been conducted at 100 K. I crystallizes in the monoclinic space group P2(1)/n with unit cell parameters a = 9.662(2), b = 9.234(2), c = 13.384(2) angstrom, beta = 105.425(3)degrees, V = 1151.1(3) angstrom(3), Z = 8 (2 independent molecules per asymmetric unit), density (calculated) = 1.710 mg/m(3), absorption coefficient = 0.815 mm(-1). II crystallizes in the orthorhombic space group Iba2 with unit cell a = 20.117(4), b = 23.449(5), c = 7.852(2) angstrom, V = 3703.9(12) angstrom(3), Z = 24 (three independent molecules per asymmetric unit), density (calculated) = 1.584 mg/m(3), absorption coefficient 0.755 mm(-1). For I in the final refinement cycle the data/restraints/parameter ratios were 2639/0/161, goodness-of-fit on F-2 = 0.934, final R indices [I > 2sigma(I)] were R1 = 0.0299, wR2 = 0.0545 and R indices (all data) R1 = 0.0399, wR2 = 0.0568. The largest difference peak and hole were 0.402 and -0.259 e angstrom(-3). For II in the final refinement cycle the data/restraints/parameter ratios were 3372/1/221, goodness-of-fit on F(2) = 0.950, final R indices [I > 2sigma(I)] were R1 = 0.0407, wR2 = 0.1048 and R indices (all data) R1 = 0.0450, wR2 = 0.1088. The absolute structure parameter = 0.19(9) and largest difference peak and hole 0.934 and -0.301 e angstrom(-3). Details of the geometry of the five molecules (two for I and three for II) and the crystal structures are fully discussed. Corresponding features of the molecular geometry are highly consistent and firmly establish the geometry of the rhodanine
Resumo:
A high-resolution crystal structure is reported for d(TpA)*, the intramolecular thymine–adenine photoadduct that is produced by direct ultraviolet excitation of the dinucleoside monophosphate d(TpA). It confirms the presence of a central 1,3-diazacyclooctatriene ring linking the remnants of the T and A bases, as previously deduced from heteronuclear NMR measurements by Zhao et al. (The structure of d(TpA)*, the major photoproduct of thymidylyl-(3'-5')-deoxyadenosine. Nucleic Acids Res., 1996, 24, 1554–1560). Within the crystal, the d(TpA)* molecules exist as zwitterions with a protonated amidine fragment of the eight-membered ring neutralizing the charge of the internucleotide phosphate monoanion. The absolute configuration at the original thymine C5 and C6 atoms is determined as 5S,6R. This is consistent with d(TpA)* arising by valence isomerization of a precursor cyclobutane photoproduct with cis–syn stereochemistry that is generated by [2 + 2] photoaddition of the thymine 5,6-double bond across the C6 and C5 positions of adenine. This mode of photoaddition should be favoured by the stacked conformation of adjacent T and A bases in B-form DNA. It is probable that the primary photoreaction is mechanistically analogous to pyrimidine dimerization despite having a much lower quantum yield.
Coordination environment of [UO2Br4](2-) in ionic liquids and crystal structure of [Bmim](2)[UO2Br4]
Resumo:
The complex formed by the reaction of the uranyl ion, UO22+, with bromide ions in the ionic liquids 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([Bmiml[Tf2N]) and methyl-tributylammonium bis(trifluoromethylsulfonyl)imide ([MeBu3N][Tf2N]) has been investigated by UV-Vis and U L-III-edge EXAFS spectroscopy and compared to the crystal structure of [Bmim](2)[UO2Br4]. The solid state reveals a classical tetragonal bipyramid geometry for [UO2Br4](2-) with hydrogen bonds between the Bmim(+) and the coordinated bromides. The UV-Vis spectroscopy reveals the quantitative formation of [UO2Br4](2-) when a stoichiometric amount of bromide ions is added to UO2(CF3SO3)(2) in both Tf2N-based ionic liquids. The absorption spectrum also suggests a D-4h symmetry for [UO2Br4](2-) in ionic liquids, as previously observed for the [UO2Cl4](2-) congener. EXAFS analysis supports this conclusion and demonstrates that the [UO2Br4](2-) coordination polyhedron is maintained in the ionic liquids without any coordinating solvent or water molecules. The mean U-O and U-Br distances in the solutions, determined by EXAFS, are, respectively, 1.766(2) and 2.821(2)angstrom in [Bmim][Tf2N], and, respectively, 1.768(2) and 2.827(2) angstrom, in [MeBu3N][Tf2N]. Similar results are obtained in both ionic liquids indicating no significant influence of the ionic liquid cation either on the complexation reaction or on the structure of the uranyl species. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
C21H22N6O8S2, monoclinic, P12(1)/n1 (no. 14), a = 10.1931(8) angstrom, b = 11.9627(7) angstrom, c = 20.299(2) angstrom, beta = 95.131(4)degrees, V = 2465.2 A(3), Z = 4, R-gt(F) = 0.079, wR(ref)(F-2) = 0.229, T = 100 K.
Resumo:
Substituted 3-(phenylamino)-1H-pyrrole-2,5-diones were identified from a high throughput screen as inducers of human ATP binding cassette transporter A1 expression. Mechanism of action studies led to the identification of GSK3987 (4) as an LXR ligand. 4 recruits the steroid receptor coactivator-1 to human LXR alpha and LXRP with EC(50)s of 40 nM, profiles as an LXR agonist in functional assays, and activates LXR though a mechanism that is similar to first generation LXR agonists.
Resumo:
Crystallisation of the square-planar complex trans-Pt{PPh2(C16H15)}(2)Cl-2 from dichloromethane-diethyl ether (1:1) affords two different solvates; trans-Pt{PPh2(C16H15)}(2)Cl-2. CH2Cl2 1 and trans-Pt{PPh2(C16H15)}(2)Cl-2. Et2O 2; the CH2Cl2 forms H-bonding interactions with the complex whereas the Et2O participates only in weak van der Waals interactions; these differences arise from the different hydrogen-bonding characteristics of each solvent.
Resumo:
Current therapeutics and prophylactics for malaria are under severe challenge as a result of the rapid emergence of drug-resistant parasites. The human malaria parasite Plasmodium falciparum expresses two neutral aminopeptidases, PfA-M1 and PfA-M17, which function in regulating the intracellular pool of amino acids required for growth and development inside the red blood cell. These enzymes are essential for parasite viability and are validated therapeutic targets. We previously reported the x-ray crystal structure of the monomeric PfA-M1 and proposed a mechanism for substrate entry and free amino acid release from the active site. Here, we present the x-ray crystal structure of the hexameric leucine aminopeptidase, PfA-M17, alone and in complex with two inhibitors with antimalarial activity. The six active sites of the PfA-M17 hexamer are arranged in a disc-like fashion so that they are orientated inwards to form a central catalytic cavity; flexible loops that sit at each of the six entrances to the catalytic cavern function to regulate substrate access. In stark contrast to PfA-M1, PfA-M17 has a narrow and hydrophobic primary specificity pocket which accounts for its highly restricted substrate specificity. We also explicate the essential roles for the metal-binding centers in these enzymes (two in PfA-M17 and one in PfA-M1) in both substrate and drug binding. Our detailed understanding of the PfA-M1 and PfA- M17 active sites now permits a rational approach in the development of a unique class of two-target and/or combination antimalarial therapy.