985 resultados para Quantum Physics


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Highly uniform InAs quantum wires (QWRs) have been obtained on the In0.5Al0.5As buffer layer grown on the InP substrate 8 degrees off (001) towards (111) by molecular-beam epitaxy. The quasi-periodic composition modulation was spontaneously formed in the In0.5Al0.5As buffer layer on this misoriented InP (001). The width and period of the In-rich bands are about 10 and 40 nm, respectively. The periodic In-rich bands play a major role in the sequent InAs QWRs growth and the InAs QWRs are well positioned atop In-rich bands. The photoluminescence (PL) measurements showed a significant reduction in full width at half maximum and enhanced PL efficiency for InAs QWRs on misoriented InP(001) as compared to that on normal InP(001). (c) 2006 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have studied the equilibrium and nonequilibrium electronic transports through a double quantum dot coupled to leads in a symmetrical parallel configuration in the presence of both the inter- and the intradot Coulomb interactions. The influences of the interdot interaction and the difference between dot levels on the local density of states (LDOS) and the differential conductance are paid special attention. We find an interesting zero-bias maximum of the differential conductance induced by the interdot interaction, which can be interpreted in terms of the LDOS of the two dots. Due to the presence of the interdot interaction, the LDOS peaks around the dot levels epsilon(i) are split, and as a result, the most active energy level which supports the transport is shifted near to the Fermi level of the leads in the equilibrium situation. (c) 2006 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Quantum dissipation and broadening mechanisms in Si-doped InGaN quantum dots are studied via the photoluminescence technique. It is found that the dissipative thermal bath that embeds the quantum dots plays an important role in the photon emission processes. Observed spontaneous emission spectra are modeled with the multimode Brownian oscillator model achieving an excellent agreement between experiment and theory for a wide temperature range. The dimensionless Huang-Rhys factor characterizing the strength of electron-LO-phonon coupling and damping constant accounting for the LO-phonon-bath interaction strength are found to be similar to 0.2 and 200 cm(-1), respectively, for the InGaN QDs. (c) 2006 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Effect of rapid thermal annealing on photoluminescence (PL) properties of InGaAs, InGaNAs, InGaAsSb, and InGaNAsSb quantum wells (QWs) grown by molecular-beam epitaxy was systematically investigated. Variations of PL intensity and full width at half maximum were recorded from the samples annealed at different conditions. The PL peak intensities of InGaAs and InGaNAs QWs initially increase and then decrease when the annealing temperature increased from 600 to 900 degrees C, but the drawing lines of InGaAsSb and InGaNAsSb take on an "M" shape. The enhancement of the PL intensity and the decrease of the full width at half maximum in our samples are likely due to the removal of defects and dislocations as well as the composition's homogenization. In the 800-900 degrees C high-temperature region, interdiffusion is likely the main factor influencing the PL intensity. In-N is easily formed during annealing which will prevent In out diffusion, so the largest blueshift was observed in InGaAsSb in the high-temperature region. (c) 2006 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

For the InAs/GaAs quantum-dot system, the evolution of the wetting layer (WL) with the InAs deposition thickness has been studied by reflectance difference spectroscopy (RDS) in combination with atomic force microscopy and photoluminescence. One transition related to the light hole in the WL has been observed clearly in RDS, from which its transition energy and in-plane optical anisotropy (OA) are determined. The evolution of WL with the InAs dot formation and ripening has been discussed. In addition, the remarkable changes in OA at the onsets of the dot formation and ripening have been observed, implying the mode transitions of atom transport between the WL and the dots.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A GaAs/AlGaAs two-dimensional electron gas (2 DEG) structure with the high mobility of mu(2K) = 1.78 x 10(6) cm(2)/Vs has been studied by low-temperature Hall and Shubnikov de Hass (SdH) measurements. Quantum lifetimes related to all-angle scattering events reduced from 0.64 ps to 0.52 ps after illuminating by Dingle plots, and transport lifetimes related to large-angle scattering events increasing from 42.3 ps to 67.8 ps. These results show that small-angle scattering events become stronger. It is clear that small-angle scattering events can cause the variation of the widths of the quantum Hall plateaus.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Quantum point contact (QPC), one of the typical mesoscopic transport devices, has been suggested to be an efficient detector for quantum measurement. In the context of two-state charge qubit, our previous studies showed that the QPC's measurement back-action cannot be described by the conventional Lindblad quantum master equation. In this work, we study the measurement problem of a multistate system, say, an electron in disordered potential, subject to the quantum measurement of the mesoscopic detector QPC. The effect of measurement back-action and the detector's readout current are analyzed, where particular attention is focused on some new features and the underlying physics associated with the measurement-induced delocalization versus the measurement voltages.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The optical properties of two kinds of InGaN/GaN quantum-wells light emitting diodes, one of which was doped with Si in barriers while the other was not, are comparatively investigated using time-integrated photoluminescence and time-resolved photoluminescence techniques. The results clearly demonstrate the coexistence of the band gap renormalization and phase-space filling effect in the structures with Si doped barriers. It is surprisingly found that photogenerated carriers in the intentionally undoped structures decay nonexponentially, whereas carriers in the Si doped ones exhibit a well exponential time evolution. A new model developed by O. Rubel, S. D. Baranovskii, K. Hantke, J. D. Heber, J. Koch, P. Thomas, J. M. Marshall, W. Stolz, and W. H. Ruhle [J. Optoelectron. Adv. Mater. 7, 115 (2005)] was used to simulate the decay curves of the photogenerated carriers in both structures, which enables us to determine the localization length of the photogenerated carriers in the structures. It is found that the Si doping in the barriers not only leads to remarkable many-body effects but also significantly affects the carrier recombination dynamics in InGaN/GaN layered heterostructures. (c) 2006 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Using non-identical quantum wells as the active material, a new distributed-feed back laser is fabricated with period varied Bragg grating. The full width at half maximum of 115 nm is observed in the amplified spontaneous emission spectrum of this material, which is flatter and wider than that of the identical quantum wells. Two wavelengths of 1.51 mu m and 1.53 mu m are realized under different work conditions. The side-mode suppression ratios of both wavelengths reach 40 dB. This device can be used as the light source of coarse wavelength division multiplexer communication systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The influence of nonradiative recombination on the photoluminescence (PL) decay dynamics in GaInNAs/GaAs quantum wells is studied by time-resolved photoluminescence under various excitation intensities. It is found that the PL decay process strongly depends on the excitation intensity. In particular, under the moderate excitation levels the PL decay curves exhibit unusual nonexponential behavior and show a convex shape. By introducing a new parameter of the effective concentration of nonradiative recombination centers into a rate equation, the observed results are well simulated. The cw PL data further demonstrate the nonradiative recombination effect on the optical properties of GaInNAs/GaAs quantum wells. (c) 2006 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Based on a multiparticle-state stimulated Raman adiabatic passage approach, a comprehensive theoretical study of the ultrafast optical manipulation of electron spins in quantum wells is presented. In addition to corroborating experimental findings [Gupta , Science 292, 2458 (2001)], we improve the expression for the optical-pulse-induced effective magnetic field, in comparison with the one obtained via the conventional single-particle ac Stark shift. Further study of the effect of hole-spin relaxation reveals that, while the coherent optical manipulation of electron spin in undoped quantum wells would deteriorate in the presence of relatively fast hole-spin relaxation, the coherent control in doped systems can be quite robust against decoherence. The implications of the present results on quantum dots will also be discussed. (c) 2005 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Low-indium-content self-assembled InGaAs/GaAs quantum dots (SAQD) were grown using solid-source molecular beam epitaxy (MBE) and investigated by atomic force microscopy and photoluminescence (PL) spectroscopy. Silicon, which was doped at different quantum dot (QD) growth stages, markedly increased the density of QD. We obtained high density In0.35Ga0.65As/GaAs(001) quantum dots of 10(11)/cm(2) at a growth temperature of 520degreesC. PL spectra and distribution statistics show the high quality and uniformity of our silicon-doped samples. The density increment can be explained using the lattice-hardening mechanism due to silicon doping.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Self-assembled InAs/GaAs quantum dots covered by the 1-nm InxAl(1-x)As (x = 0.2,0.3) and 3-nm In0.2Ga0.8As combination strain-reducing layer are fabricated, whose height can take up to 30-46 nm. The luminescence emission at a long-wavelength of 1.33 mum and the energy separation between the ground and the first-excited state of 86 meV are observed at room temperature. Furthermore, comparative study proves that the energy separation can increase to 91 meV by multiple stacking.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The structural and optical properties of GaAsSb/GaAs quantum wells (QWs) and strain-compensated GaAsP/GaAs/GaAsSb/GaAs/GaAsP QWs grown on a GaAs substrate by molecular beam epitaxy are investigated using high-resolution x-ray diffraction and photoluminescence (PL) measurements. We demonstrated that the insertion of tensile GaAsP layers into the active region of GaAsSb/GaAs QWs effectively improves the structural and optical quality. Even the Sb composition is as high as 0.39. The PL spectra at 11 K and room temperature indicate that the PL peak of strain-compensated QWs has a narrower linewidth and higher intensity in comparison to the sample without strain compensation. The results of PL peak blueshift with increasing excitation show the strain-compensated GaAsSb/GaAs interface characteristic of type-I band alignment. (C) 2003 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The laterally confining potential of quantum dots (QDs) fabricated in semiconductor heterostructures is approximated by an elliptical two-dimensional harmonic-oscillator well or a bowl-like circular well. The energy spectrum of two interacting electrons in these potentials is calculated in the effective-mass approximation as a function of dot size and characteristic frequency of the confining potential by the exact diagonalization method. Energy level crossover is displayed according to the ratio of the characteristic frequencies of the elliptical confinement potential along the y axis and that along the x axis. Investigating the rovibrational spectrum with pair-correlation function and conditional probability distribution, we could see the violation of circular symmetry. However, there are still some symmetries left in the elliptical QDs. When the QDs are confined by a "bowl-like" potential, the removal of the degeneracy in the energy levels of QDs is found. The distribution of energy levels is different for the different heights of the barriers. (C) 2003 American Institute of Physics.