941 resultados para Q de Tobin
Resumo:
Die vorliegende Dissertation behandelt den anomalen Sektor bzw. den Sektor ungerader innerer Parität in mesonischer chiraler Störungsrechnung (mesonische ChPT) bis zur chiralen Ordnung O(q^6). Auf eine Einführung in die Quantenchromodynamik (QCD) und ihrer Verknüpfung mit der chiralen Symmetrie folgt die Betrachtung der mesonischen ChPT im Sektor gerader sowie ungerader innerer Parität bis zur Ordnung O(q^4). Der sogenannte Wess-Zumino-Witten Term, welcher den Einfluss der axialen Anomalie bezogen auf die ChPT widerspiegelt, wird studiert. Anschließend wird die allgemeinste Lagrangedichte der Ordnung O(q^6) im Sektor ungerader innerer Parität detailiert analysiert. Sie enthält in ihrer SU(3)-Formulierung 23 Niederenergiekonstanten(low-energy constant=LEC). Aus Sicht der ChPT sind diese LECs freie Parameter, die auf irgendeine Art und Weise fixiert werden müssen. Es wird herausgearbeitet, bei welchen Prozessen und in welchen Kombinationen die jeweiligen LECs auftreten. Daraufhin wird versucht so viele dieser LECs wie möglich mittels Vektormesondominanz (VMD) sowie experimenteller Daten abzuschätzen und anzupassen. Hierfür wird zuerst die Vorgehensweise einer konsistenten Rechnung im Sektor ungerader innerer Parität bis zur Ordnung O(q^6) studiert, gefolgt von der Berechnung von insgesamt vierzehn geeigneten Prozessen im Rahmen der ChPT bis zur Ordnung O(q^6). Unter Verwendung experimenteller Daten werden dreizehn der LECs angepasst, wobei gegenwärtig nicht bei allen betrachteten Prozessen experimentelle Daten zur Verfügung stehen. Die Ergebnisse werden diskutiert und Unterschiede bzw. Übereinstimmungen mit anderen Rechnungen herausgearbeitet. Zusammenfassend erhält man einen umfassenden Einblick in den Sektor ungerader innerer Parität in mesonischer ChPT bis zur Ordnung O(q^6).
Resumo:
The electromagnetic form factors of the proton are fundamental quantities sensitive to the distribution of charge and magnetization inside the proton. Precise knowledge of the form factors, in particular of the charge and magnetization radii provide strong tests for theory in the non-perturbative regime of QCD. However, the existing data at Q^2 below 1 (GeV/c)^2 are not precise enough for a hard test of theoretical predictions.rnrnFor a more precise determination of the form factors, within this work more than 1400 cross sections of the reaction H(e,e′)p were measured at the Mainz Microtron MAMI using the 3-spectrometer-facility of the A1-collaboration. The data were taken in three periods in the years 2006 and 2007 using beam energies of 180, 315, 450, 585, 720 and 855 MeV. They cover the Q^2 region from 0.004 to 1 (GeV/c)^2 with counting rate uncertainties below 0.2% for most of the data points. The relative luminosity of the measurements was determined using one of the spectrometers as a luminosity monitor. The overlapping acceptances of the measurements maximize the internal redundancy of the data and allow, together with several additions to the standard experimental setup, for tight control of systematic uncertainties.rnTo account for the radiative processes, an event generator was developed and implemented in the simulation package of the analysis software which works without peaking approximation by explicitly calculating the Bethe-Heitler and Born Feynman diagrams for each event.rnTo separate the form factors and to determine the radii, the data were analyzed by fitting a wide selection of form factor models directly to the measured cross sections. These fits also determined the absolute normalization of the different data subsets. The validity of this method was tested with extensive simulations. The results were compared to an extraction via the standard Rosenbluth technique.rnrnThe dip structure in G_E that was seen in the analysis of the previous world data shows up in a modified form. When compared to the standard-dipole form factor as a smooth curve, the extracted G_E exhibits a strong change of the slope around 0.1 (GeV/c)^2, and in the magnetic form factor a dip around 0.2 (GeV/c)^2 is found. This may be taken as indications for a pion cloud. For higher Q^2, the fits yield larger values for G_M than previous measurements, in agreement with form factor ratios from recent precise polarized measurements in the Q2 region up to 0.6 (GeV/c)^2.rnrnThe charge and magnetic rms radii are determined as rn⟨r_e⟩=0.879 ± 0.005(stat.) ± 0.004(syst.) ± 0.002(model) ± 0.004(group) fm,rn⟨r_m⟩=0.777 ± 0.013(stat.) ± 0.009(syst.) ± 0.005(model) ± 0.002(group) fm.rnThis charge radius is significantly larger than theoretical predictions and than the radius of the standard dipole. However, it is in agreement with earlier results measured at the Mainz linear accelerator and with determinations from Hydrogen Lamb shift measurements. The extracted magnetic radius is smaller than previous determinations and than the standard-dipole value.
Resumo:
Die elektromagnetischen Nukleon-Formfaktoren sind fundamentale Größen, welche eng mit der elektromagnetischen Struktur der Nukleonen zusammenhängen. Der Verlauf der elektrischen und magnetischen Sachs-Formfaktoren G_E und G_M gegen Q^2, das negative Quadrat des Viererimpulsübertrags im elektromagnetischen Streuprozess, steht über die Fouriertransformation in direkter Beziehung zu der räumlichen Ladungs- und Strom-Verteilung in den Nukleonen. Präzise Messungen der Formfaktoren über einen weiten Q^2-Bereich werden daher für ein quantitatives Verständnis der Nukleonstruktur benötigt.rnrnDa es keine freien Neutrontargets gibt, gestaltet sich die Messung der Neutron-Formfaktoren schwierig im Vergleich zu der Messung am Proton. Konsequenz daraus ist, dass die Genauigkeit der vorhandenen Daten von Neutron-Formfaktoren deutlich geringer ist als die von Formfaktoren des Protons; auch der vermessene Q^2-Bereich ist kleiner. Insbesondere der elektrische Sachs-Formfaktor des Neutrons G_E^n ist schwierig zu messen, da er aufgrund der verschwindenden Nettoladung des Neutrons im Verhältnis zu den übrigen Nukleon-Formfaktoren sehr klein ist. G_E^n charakterisiert die Ladungsverteilung des elektrisch neutralen Neutrons und ist damit besonders sensitiv auf die innere Struktur des Neutrons.rnrnIn der hier vorgestellten Arbeit wurde G_E^n aus Strahlhelizitätsasymmetrien in der quasielastischen Streuung vec{3He}(vec{e}, e'n)pp bei einem Impulsübertrag von Q^2 = 1.58 (GeV/c)^2 bestimmt. Die Messung fand in Mainz an der Elektronbeschleunigeranlage Mainzer Mikrotron innerhalb der A1-Kollaboration im Sommer 2008 statt. rnrnLongitudinal polarisierte Elektronen mit einer Energie von 1.508 GeV wurden an einem polarisierten ^3He-Gastarget, das als effektives, polarisiertes Neutrontarget diente, gestreut. Die gestreuten Elektronen wurden in Koinzidenz mit den herausgeschlagenen Neutronen detektiert; die Elektronen wurden in einem magnetischen Spektrometer nachgewiesen, durch den Nachweis der Neutronen in einer Matrix aus Plastikszintillatoren wurde der Beitrag der quasielastischen Streuung am Proton unterdrückt.rnrnAsymmetrien des Wirkungsquerschnitts bezüglich der Elektronhelizität sind bei Orientierung der Targetpolarisation in der Streuebene und senkrecht zum Impulsübertrag sensitiv auf G_E^n / G_M^n; mittels deren Messung kann G_E^n bestimmt werden, da der magnetische Formfaktor G_M^n mit vergleichsweise hoher Präzision bekannt ist. Zusätzliche Messungen der Asymmetrie bei einer Polarisationsorientierung parallel zum Impulsübertrag wurden genutzt, um systematische Fehler zu reduzieren.rnrnFür die Messung inklusive statistischem (stat) und systematischem (sys) Fehler ergab sich G_E^n = 0.0244 +/- 0.0057_stat +/- 0.0016_sys.
Resumo:
The major index has been deeply studied from the early 1900s and recently has been generalized in different directions, such as the case of labeled forests and colored permutations. In this thesis we define new types of labelings for forests in which the labels are colored integers. We extend the definition of the flag-major index for these labelings and we present an analogue of well known major index hook length formulas. Finally, this study (which has just apparently a simple combinatoric nature) allows us to show a notion of duality for two particular families of groups obtained from the product G(r,n)×G(r,m).
Resumo:
Analyzing and modeling relationships between the structure of chemical compounds, their physico-chemical properties, and biological or toxic effects in chemical datasets is a challenging task for scientific researchers in the field of cheminformatics. Therefore, (Q)SAR model validation is essential to ensure future model predictivity on unseen compounds. Proper validation is also one of the requirements of regulatory authorities in order to approve its use in real-world scenarios as an alternative testing method. However, at the same time, the question of how to validate a (Q)SAR model is still under discussion. In this work, we empirically compare a k-fold cross-validation with external test set validation. The introduced workflow allows to apply the built and validated models to large amounts of unseen data, and to compare the performance of the different validation approaches. Our experimental results indicate that cross-validation produces (Q)SAR models with higher predictivity than external test set validation and reduces the variance of the results. Statistical validation is important to evaluate the performance of (Q)SAR models, but does not support the user in better understanding the properties of the model or the underlying correlations. We present the 3D molecular viewer CheS-Mapper (Chemical Space Mapper) that arranges compounds in 3D space, such that their spatial proximity reflects their similarity. The user can indirectly determine similarity, by selecting which features to employ in the process. The tool can use and calculate different kinds of features, like structural fragments as well as quantitative chemical descriptors. Comprehensive functionalities including clustering, alignment of compounds according to their 3D structure, and feature highlighting aid the chemist to better understand patterns and regularities and relate the observations to established scientific knowledge. Even though visualization tools for analyzing (Q)SAR information in small molecule datasets exist, integrated visualization methods that allows for the investigation of model validation results are still lacking. We propose visual validation, as an approach for the graphical inspection of (Q)SAR model validation results. New functionalities in CheS-Mapper 2.0 facilitate the analysis of (Q)SAR information and allow the visual validation of (Q)SAR models. The tool enables the comparison of model predictions to the actual activity in feature space. Our approach reveals if the endpoint is modeled too specific or too generic and highlights common properties of misclassified compounds. Moreover, the researcher can use CheS-Mapper to inspect how the (Q)SAR model predicts activity cliffs. The CheS-Mapper software is freely available at http://ches-mapper.org.
Resumo:
The multi-target screening method described in this work allows the simultaneous detection and identification of 700 drugs and metabolites in biological fluids using a hybrid triple-quadrupole linear ion trap mass spectrometer in a single analytical run. After standardization of the method, the retention times of 700 compounds were determined and transitions for each compound were selected by a "scheduled" survey MRM scan, followed by an information-dependent acquisition using the sensitive enhanced product ion scan of a Q TRAP hybrid instrument. The identification of the compounds in the samples analyzed was accomplished by searching the tandem mass spectrometry (MS/MS) spectra against the library we developed, which contains electrospray ionization-MS/MS spectra of over 1,250 compounds. The multi-target screening method together with the library was included in a software program for routine screening and quantitation to achieve automated acquisition and library searching. With the help of this software application, the time for evaluation and interpretation of the results could be drastically reduced. This new multi-target screening method has been successfully applied for the analysis of postmortem and traffic offense samples as well as proficiency testing, and complements screening with immunoassays, gas chromatography-mass spectrometry, and liquid chromatography-diode-array detection. Other possible applications are analysis in clinical toxicology (for intoxication cases), in psychiatry (antidepressants and other psychoactive drugs), and in forensic toxicology (drugs and driving, workplace drug testing, oral fluid analysis, drug-facilitated sexual assault).