889 resultados para Public buildings -- Energy consumption


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We discuss the development and performance of a low-power sensor node (hardware, software and algorithms) that autonomously controls the sampling interval of a suite of sensors based on local state estimates and future predictions of water flow. The problem is motivated by the need to accurately reconstruct abrupt state changes in urban watersheds and stormwater systems. Presently, the detection of these events is limited by the temporal resolution of sensor data. It is often infeasible, however, to increase measurement frequency due to energy and sampling constraints. This is particularly true for real-time water quality measurements, where sampling frequency is limited by reagent availability, sensor power consumption, and, in the case of automated samplers, the number of available sample containers. These constraints pose a significant barrier to the ubiquitous and cost effective instrumentation of large hydraulic and hydrologic systems. Each of our sensor nodes is equipped with a low-power microcontroller and a wireless module to take advantage of urban cellular coverage. The node persistently updates a local, embedded model of flow conditions while IP-connectivity permits each node to continually query public weather servers for hourly precipitation forecasts. The sampling frequency is then adjusted to increase the likelihood of capturing abrupt changes in a sensor signal, such as the rise in the hydrograph – an event that is often difficult to capture through traditional sampling techniques. Our architecture forms an embedded processing chain, leveraging local computational resources to assess uncertainty by analyzing data as it is collected. A network is presently being deployed in an urban watershed in Michigan and initial results indicate that the system accurately reconstructs signals of interest while significantly reducing energy consumption and the use of sampling resources. We also expand our analysis by discussing the role of this approach for the efficient real-time measurement of stormwater systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PEDRINI, Aldomar; SZOKOLAY, Steven. Recomendações para o desenvolvimento de uma ferramenta de suporte às primeiras decisões projetuais visando ao desempenho energético de edificações de escritório em clima quente. Ambiente Construído, Porto Alegre, v. 5, n. 1, p.39-54, jan./mar. 2005. Trimestral. Disponível em: . Acesso em: 04 out. 2010.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The evolution of wireless communication systems leads to Dynamic Spectrum Allocation for Cognitive Radio, which requires reliable spectrum sensing techniques. Among the spectrum sensing methods proposed in the literature, those that exploit cyclostationary characteristics of radio signals are particularly suitable for communication environments with low signal-to-noise ratios, or with non-stationary noise. However, such methods have high computational complexity that directly raises the power consumption of devices which often have very stringent low-power requirements. We propose a strategy for cyclostationary spectrum sensing with reduced energy consumption. This strategy is based on the principle that p processors working at slower frequencies consume less power than a single processor for the same execution time. We devise a strict relation between the energy savings and common parallel system metrics. The results of simulations show that our strategy promises very significant savings in actual devices.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Building design is an effective way to achieve HVAC energy consumption reduction. However, this potentiality is often neglected by architects due to the lack of references to support design decisions. This works intends to propose architectural design guidelines for energy efficiency and thermal performance of Campus/UFRN buildings. These guidelines are based on computer simulations results using the software DesignBuilder. The definition of simulation models has begun with envelope variables, partially done after a field study of thirteen buildings at UFRN/Campus. This field study indicated some basic envelope patterns that were applied in simulation models. Occupation variables were identified with temperature and energy consumption monitoring procedures and a verification of illumination and equipment power, both developed at the Campus/UFRN administration building. Three simulation models were proposed according to different design phases and decisions. The first model represents early design decisions, simulating the combination of different types of geometry with three levels of envelope thermal performance. The second model, still as a part of early design phase, analyses thermal changes between circulation halls lateral and central and office rooms, as well as the heat fluxes and monthly temperatures in each circulation hall. The third model analyses the influence of middle-design and detail design decisions on energy consumption and thermal performance. In this model, different solutions of roofs, shading devices, walls and external colors were simulated. The results of all simulation models suggest a high influence of thermal loads due to the incidence of solar radiation on windows and surfaces, which highlights the importance of window shading devices, office room orientation and absorptance of roof and walls surfaces

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The assessment of building thermal performance is often carried out using HVAC energy consumption data, when available, or thermal comfort variables measurements, for free-running buildings. Both types of data can be determined by monitoring or computer simulation. The assessment based on thermal comfort variables is the most complex because it depends on the determination of the thermal comfort zone. For these reasons, this master thesis explores methods of building thermal performance assessment using variables of thermal comfort simulated by DesignBuilder software. The main objective is to contribute to the development of methods to support architectural decisions during the design process, and energy and sustainable rating systems. The research method consists on selecting thermal comfort methods, modeling them in electronic sheets with output charts developed to optimize the analyses, which are used to assess the simulation results of low cost house configurations. The house models consist in a base case, which are already built, and changes in thermal transmittance, absorptance, and shading. The simulation results are assessed using each thermal comfort method, to identify the sensitivity of them. The final results show the limitations of the methods, the importance of a method that considers thermal radiance and wind speed, and the contribution of the chart proposed

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This master thesis aims to assess the influence of the design decisions on the energy building performance of hotels. The research is based on the integration of field study and computer simulation. Firstly, a detailed field study is carried out to identify the characteristics of hotels in Natal, Rio Grande do Norte. The items assessed are occupancies, light and equipment densities, types of air conditioning, total and monthly energy consumption, among others. A second and more comprehensive field study is carried out to identify the range of occurrence of architectural variables, with a larger number of buildings. A base case is modelled in VisualDOE, based on the first field study. Then, a first set of simulations are run to explore the sensitivity of the variables on the energy consumption. The results analyses were the base of a second set of simulations, which combined the most influential variables. The results of 384 models were assessed, and the impacts of design decisions were quantified. The study discusses tendencies and recommendations, as well as the methods advantages and disadvantages

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis intends to show the level of pollutant emissions in the State of Rio Grande do Norte, generated by the final consumption of energy in the many different sectors of the economy. This information was obtained from the energetic matrix and from the pollutant emissions of the State and the data was taken from the Balanço Energético Estadual and from the Sistema de Informações Energéticas da Olade. The result will permit to identify the energy and most polluting economic sectors in Rio Grande do Norte, contributing to energy planning, giving direction to the public policy development that aim at the change of the energy matrix of the State. Also with the objective of reducing pollutant emissions through rationalization, efficiency and energy substitution, which the main objective is to promote the economic development based on energy consumption of less harmful impact on the environment, contributing to establishment of sustainable development

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The castor bean crop (Ricinus communis L.) has acquired prestige due to industries interest in the oil quality and recently for new sources of energy demand. The experiment that served as basis for the data used in this study was conducted at the Lageado Experimental Farm, in Botucatu - SP, 2008. This study aimed to avaluate the crop viability through energy balance and energy efficiency since the implantation until biodiesel production using parameters of consumption in operational management for installation and maintenance of culture harvest and oil production. The soil management operations, sow and harvest consumed the total of 266.20 MJ ha(-1), gathering with the fertilizers, pesticides, fuels, lubricants, labor, seed and industrial processing totaled 56,808 MJ ha(-1) of energy inputs. The energy production was 72,814.00 MJ ha(-1). The industry still lacks studies thal would contribution data collection and more specific energy coefficients. The castor beans cultivation was considered efficient allowing again of 15983.44 MJ ha(-1) equivalent to about 415 liters of diesel oil.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the last decades there was a concentrate effort of researchers in the search for options to the problem of the continuity of city development and environmental preservation. The recycling and reuse of materials in industry have been considerate as the best option to sustainable development. One of the relevant aspects in this case refers to the rational use of electrical energy. At this point, the role of engineering is to conceive new processes and materials, with the objective of reducing energy consumption and maintaining, at the same time the benefits of the technology. In this context, the objective of the present research is to analyze quantitatively the thermal behavior of walls constructed with concrete blocks which composition aggregates the expanded polystyrene (EPS) reused in the shape of flakes and in the shape of a board, resulting in a “light concrete”. Experiments were conducted, systematically, with a wall (considerate as a standard) constructed with blocks of ordinary concrete; two walls constructed with blocks of light concrete, distinct by the proportion of EPS/sand; a wall of ceramic bricks (“eight holes” type) and a wall with ordinary blocks of cement, in a way to obtain a comparative analysis of the thermal behavior of the systems. Others tests conducted with the blocks were: stress analysis and thermal properties analysis (ρ, cp e k). Based on the results, it was possible to establish quantitative relationship between the concentration (density) of EPS in the constructive elements and the decreasing of the heat transfer rate, that also changes the others thermal properties of the material, as was proved. It was observed that the walls of light concrete presents better thermal behavior compared with the other two constructive systems world wide used. Based in the results of the investigation, there was shown the viability of the use of EPS as aggregate (raw material) in the composition of the concrete, with the objective of the fabrication of blocks to non-structural masonry that works as a thermal insulation in buildings. A direct consequence of this result is the possibility of reduction of the consume of the electrical energy used to climatization of buildings. Other aspect of the investigation that must be pointed was the reuse of the EPS as a raw material to civil construction, with a clear benefit to reducing of environmental problems

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The development of nations is an unquestionable requirement. A lot of challenges concerning health, education and economy are present. A discussion on these development models has occupied the minds of decision makers in recent years. When energy supply and demand is considered, the situation becomes critical and the crucial question is: how to improve the quality of life of developing countries based on available models of development that are related to the life style of developed countries, for which the necessary use and waste of energy are present? How much energy is essential to humanity for not so as to endangering the survival conditions of future generations? the human development index (HDI) establishes the relationship among energy use, economic growth and social growth. Here it can be seen that 75% of the world population has a significant energy consumption potential. This is a strong reason to consider that the sustainable development concepts on energy policies are strategic to the future of the planet. This paper deals with the importance of seeking alternative development models for human development balance, natural resources conservation and environment through rational energy use concepts. (c) 2004 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work introduces an innovative urinal for public convenience, that promotes at the same time water reuse and personal higiene, in a safe and economical way . Furthermore it demonstrates the latest technology and its technical and economical viabillity of utilization in new and already existing buildings facilities. This new model of personal higiene equipment offers as main benefits the improved economy with subsequent decrease in drinkable water consumption, sanitary safety, low cost and easy installation due to its simplicity and to the fact that it can be installed in already existing facilities. The proposal is constituted by a higienic, ecological and smart system for flushing of public urinals. It is a conjugated system of lavatory and urinal that reuses hands higienization water from the lavatory for flushing purpose. The proposed urinal can be operated manually or automatically by means of a presential sensor. The system promotes drinkable water economy by a rational utilization by avoiding the use of waste water from hand washing in place of clean water for flushing. The proposed equipment increases the economy of clean water in a simple and economical way and it can be installed in any type of public lavatory facilitie such as schools, public buildings, hospitals, commercial buildings, bus terminals, airports, stadiums, parking buildings and shopping centers. Additional benefits of the proposed system is the suggestion of hands washing before and after the use of the urinal without contamination risks from focet handling.and render more attractive the installation for a rational use of clean water in commercial and industrial buildings. Pay-back has shown to be very attractive for a number of internal return rates and also very attractive from the point of view of environmental protection.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Includes bibliography

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Transactional memory (TM) is a new synchronization mechanism devised to simplify parallel programming, thereby helping programmers to unleash the power of current multicore processors. Although software implementations of TM (STM) have been extensively analyzed in terms of runtime performance, little attention has been paid to an equally important constraint faced by nearly all computer systems: energy consumption. In this work we conduct a comprehensive study of energy and runtime tradeoff sin software transactional memory systems. We characterize the behavior of three state-of-the-art lock-based STM algorithms, along with three different conflict resolution schemes. As a result of this characterization, we propose a DVFS-based technique that can be integrated into the resolution policies so as to improve the energy-delay product (EDP). Experimental results show that our DVFS-enhanced policies are indeed beneficial for applications with high contention levels. Improvements of up to 59% in EDP can be observed in this scenario, with an average EDP reduction of 16% across the STAMP workloads. © 2012 IEEE.