913 resultados para Projection Mapping, Augmented Reality, OpenFrameworks
Resumo:
Fashion journalism can be understood as a complex, inter-dependent set of professional practices that have arisen in a variety of media at the intersection of fashion and journalism. This thesis, Fashion Meets Journalism: Mapping and Evaluating Australian Fashion Journalism, answers the question, 'What is Australian fashion journalism?' in three stages: First, it maps the extent of fashion journalism across media in Australia to locate the field and focus on the sites of fashion journalism; second, it foregrounds practices of the journalism branch, evaluating how and why the field is pitted against other types of journalism when they share an inter-dependent set of professional practices. The opinions of leading industry producers are also sought regarding the matter. Then, considering the current position of fashion journalism, implications for fashion media and journalism are explored in order to improve the visibility of fashion journalism and solidify it as a professional practice.
Resumo:
Cardiovascular disease (CVD) affects millions of people worldwide and is influenced by numerous factors, including lifestyle and genetics. Expression quantitative trait loci (eQTLs) influence gene expression and are good candidates for CVD risk. Founder-effect pedigrees can provide additional power to map genes associated with disease risk. Therefore, we identified eQTLs in the genetic isolate of Norfolk Island (NI) and tested for associations between these and CVD risk factors. We measured genome-wide transcript levels of blood lymphocytes in 330 individuals and used pedigree-based heritability analysis to identify heritable transcripts. eQTLs were identified by genome-wide association testing of these transcripts. Testing for association between CVD risk factors (i.e., blood lipids, blood pressure, and body fat indices) and eQTLs revealed 1,712 heritable transcripts (p < 0.05) with heritability values ranging from 0.18 to 0.84. From these, we identified 200 cis-acting and 70 trans-acting eQTLs (p < 1.84 × 10(-7)) An eQTL-centric analysis of CVD risk traits revealed multiple associations, including 12 previously associated with CVD-related traits. Trait versus eQTL regression modeling identified four CVD risk candidates (NAAA, PAPSS1, NME1, and PRDX1), all of which have known biological roles in disease. In addition, we implicated several genes previously associated with CVD risk traits, including MTHFR and FN3KRP. We have successfully identified a panel of eQTLs in the NI pedigree and used this to implicate several genes in CVD risk. Future studies are required for further assessing the functional importance of these eQTLs and whether the findings here also relate to outbred populations.
Resumo:
Deterministic synthesis of self-organized quantum dot arrays for renewable energy, biomedical, and optoelectronic applications requires control over adatom capture zones, which are presently mapped using unphysical geometric tessellation. In contrast, the proposed kinetic mapping is based on simulated two-dimensional adatom fluxes in the array and includes the effects of nucleation, dissolution, coalescence, and process parameters such as surface temperature and deposition rate. This approach is generic and can be used to control the nanoarray development in various practical applications. © 2009 American Institute of Physics.
Resumo:
Mapping of protein signaling networks within tumors can identify new targets for therapy and provide a means to stratify patients for individualized therapy. Despite advances in combination chemotherapy, the overall survival for childhood rhabdomyosarcoma remains ∼60%. A critical goal is to identify functionally important protein signaling defects associated with treatment failure for the 40% nonresponder cohort. Here, we show, by phosphoproteomic network analysis of microdissected tumor cells, that interlinked components of the Akt/mammalian target of rapamycin (mTOR) pathway exhibited increased levels of phosphorylation for tumors of patients with short-term survival. Specimens (n = 59) were obtained from the Children's Oncology Group Intergroup Rhabdomyosarcoma Study (IRS) IV, D9502 and D9803, with 12-year follow-up. High phosphorylation levels were associated with poor overall and poor disease-free survival: Akt Ser473 (overall survival P < 0.001, recurrence-free survival P < 0.0009), 4EBP1 Thr37/46 (overall survival P < 0.0110, recurrence-free survival P < 0.0106), eIF4G Ser1108 (overall survival P < 0.0017, recurrence-free survival P < 0.0072), and p70S6 Thr389 (overall survival P < 0.0085, recurrence-free survival P < 0.0296). Moreover, the findings support an altered interrelationship between the insulin receptor substrate (IRS-1) and Akt/mTOR pathway proteins (P < 0.0027) for tumors from patients with poor survival. The functional significance of this pathway was tested using CCI-779 in a mouse xenograft model. CCI-779 suppressed phosphorylation of mTOR downstream proteins and greatly reduced the growth of two different rhabdomyosarcoma (RD embryonal P = 0.00008; Rh30 alveolar P = 0.0002) cell lines compared with controls. These results suggest that phosphoprotein mapping of the Akt/mTOR pathway should be studied further as a means to select patients to receive mTOR/IRS pathway inhibitors before administration of chemotherapy.
Resumo:
Purpose Corneal confocal microscopy (CCM) is a rapid non-invasive ophthalmic technique, which has been shown to diagnose and stratify the severity of diabetic neuropathy. Current morphometric techniques assess individual static images of the subbasal nerve plexus; this work explores the potential for non-invasive assessment of the wide-field morphology and dynamic changes of this plexus in vivo. Methods In this pilot study, laser scanning CCM was used to acquire maps (using a dynamic fixation target and semi-automated tiling software) of the central corneal sub-basal nerve plexus in 4 diabetic patients with and 6 without neuropathy and in 2 control subjects. Nerve migration was measured in an additional 7 diabetic patients with neuropathy, 4 without neuropathy and in 2 control subjects by repeating a modified version of the mapping procedure within 2-8 weeks, thus facilitating re-identification of distinctive nerve landmarks in the 2 montages. The rate of nerve movement was determined from these data and normalised to a weekly rate (µm/week), using customised software. Results Wide-field corneal nerve fibre length correlated significantly with the Neuropathy Disability Score (r = -0.58, p < 0.05), vibration perception (r = -0.66, p < 0.05) and peroneal conduction velocity (r = 0.67, p < 0.05). Central corneal nerve fibre length did not correlate with any of these measures of neuropathy (p > 0.05 for all). The rate of corneal nerve migration was 14.3 ± 1.1 µm/week in diabetic patients with neuropathy, 19.7 ± 13.3µm/week in diabetic patients without neuropathy, and 24.4 ± 9.8µm/week in control subjects; however, these differences were not significantly different (p = 0.543). Conclusions Our data demonstrate that it is possible to capture wide-field images of the corneal nerve plexus, and to quantify the rate of corneal nerve migration by repeating this procedure over a number of weeks. Further studies on larger sample sizes are required to determine the utility of this approach for the diagnosis and monitoring of diabetic neuropathy.
Resumo:
For robots operating in outdoor environments, a number of factors, including weather, time of day, rough terrain, high speeds, and hardware limitations, make performing vision-based simultaneous localization and mapping with current techniques infeasible due to factors such as image blur and/or underexposure, especially on smaller platforms and low-cost hardware. In this paper, we present novel visual place-recognition and odometry techniques that address the challenges posed by low lighting, perceptual change, and low-cost cameras. Our primary contribution is a novel two-step algorithm that combines fast low-resolution whole image matching with a higher-resolution patch-verification step, as well as image saliency methods that simultaneously improve performance and decrease computing time. The algorithms are demonstrated using consumer cameras mounted on a small vehicle in a mixed urban and vegetated environment and a car traversing highway and suburban streets, at different times of day and night and in various weather conditions. The algorithms achieve reliable mapping over the course of a day, both when incrementally incorporating new visual scenes from different times of day into an existing map, and when using a static map comprising visual scenes captured at only one point in time. Using the two-step place-recognition process, we demonstrate for the first time single-image, error-free place recognition at recall rates above 50% across a day-night dataset without prior training or utilization of image sequences. This place-recognition performance enables topologically correct mapping across day-night cycles.
Resumo:
Accurate three-dimensional representations of cultural heritage sites are highly valuable for scientific study, conservation, and educational purposes. In addition to their use for archival purposes, 3D models enable efficient and precise measurement of relevant natural and architectural features. Many cultural heritage sites are large and complex, consisting of multiple structures spatially distributed over tens of thousands of square metres. The process of effectively digitising such geometrically complex locations requires measurements to be acquired from a variety of viewpoints. While several technologies exist for capturing the 3D structure of objects and environments, none are ideally suited to complex, large-scale sites, mainly due to their limited coverage or acquisition efficiency. We explore the use of a recently developed handheld mobile mapping system called Zebedee in cultural heritage applications. The Zebedee system is capable of efficiently mapping an environment in three dimensions by continually acquiring data as an operator holding the device traverses through the site. The system was deployed at the former Peel Island Lazaret, a culturally significant site in Queensland, Australia, consisting of dozens of buildings of various sizes spread across an area of approximately 400 × 250 m. With the Zebedee system, the site was scanned in half a day, and a detailed 3D point cloud model (with over 520 million points) was generated from the 3.6 hours of acquired data in 2.6 hours. We present results demonstrating that Zebedee was able to accurately capture both site context and building detail comparable in accuracy to manual measurement techniques, and at a greatly increased level of efficiency and scope. The scan allowed us to record derelict buildings that previously could not be measured because of the scale and complexity of the site. The resulting 3D model captures both interior and exterior features of buildings, including structure, materials, and the contents of rooms.
Resumo:
Introduction A novel realistic 3D virtual reality (VR) application has been developed to allow medical imaging students at Queensland University of Technology to practice radiographic techniques independently outside the usual radiography laboratory. Methods A flexible agile development methodology was used to create the software rapidly and effectively. A 3D gaming environment and realistic models were used to engender presence in the software while tutor-determined gold standards enabled students to compare their performance and learn in a problem-based learning pedagogy. Results Students reported high levels of satisfaction and perceived value and the software enabled up to 40 concurrent users to prepare for clinical practice. Student feedback also indicated that they found 3D to be of limited value in the desktop version compared to the usual 2D approach. A randomised comparison between groups receiving software-based and traditional practice measured performance in a formative role play with real equipment. The results of this work indicated superior performance with the equipment for the VR trained students (P = 0.0366) and confirmed the value of VR for enhancing 3D equipment-based problem-solving skills. Conclusions Students practising projection techniques virtually performed better at role play assessments than students practising in a traditional radiography laboratory only. The application particularly helped with 3D equipment configuration, suggesting that teaching 3D problem solving is an ideal use of such medical equipment simulators. Ongoing development work aims to establish the role of VR software in preparing students for clinical practice with a range of medical imaging equipment.
Resumo:
The HOXB13 gene has been implicated in prostate cancer (PrCa) susceptibility. We performed a high resolution fine-mapping analysis to comprehensively evaluate the association between common genetic variation across the HOXB genetic locus at 17q21 and PrCa risk. This involved genotyping 700 SNPs using a custom Illumina iSelect array (iCOGS) followed by imputation of 3195 SNPs in 20,440 PrCa cases and 21,469 controls in The PRACTICAL consortium. We identified a cluster of highly correlated common variants situated within or closely upstream of HOXB13 that were significantly associated with PrCa risk, described by rs117576373 (OR 1.30, P = 2.62×10(-14)). Additional genotyping, conditional regression and haplotype analyses indicated that the newly identified common variants tag a rare, partially correlated coding variant in the HOXB13 gene (G84E, rs138213197), which has been identified recently as a moderate penetrance PrCa susceptibility allele. The potential for GWAS associations detected through common SNPs to be driven by rare causal variants with higher relative risks has long been proposed; however, to our knowledge this is the first experimental evidence for this phenomenon of synthetic association contributing to cancer susceptibility.
Resumo:
This practice-led research project investigated the use of digital projection as a compositional tool in live performance. The project was carried out through the creation of a new Australian theatre work called Genesis that poetically integrated digital projection and live performance. The investigation produced a framework for creating powerful theatrical sequences where the themes and ideas of the show were embedded inside particular performance gestures prompting an expanded aesthetic perception of the content.
Resumo:
Supervisory Control and Data Acquisition systems (SCADA) are widely used to control critical infrastructure automatically. Capturing and analyzing packet-level traffic flowing through such a network is an essential requirement for problems such as legacy network mapping and fault detection. Within the framework of captured network traffic, we present a simple modeling technique, which supports the mapping of the SCADA network topology via traffic monitoring. By characterizing atomic network components in terms of their input-output topology and the relationship between their data traffic logs, we show that these modeling primitives have good compositional behaviour, which allows complex networks to be modeled. Finally, the predictions generated by our model are found to be in good agreement with experimentally obtained traffic.
Resumo:
Mapping the Unmappable? the Choreography Shared Material on Dying through the Lens of the Technogenetic Dancer. If choreographic movement is a trace, which is already behind at the moment of its appearance, the impulses that move the dancer could be understood to reside in the virtual. Whether they are the internalized instructions of the choreographer, the inscriptions of concepts on the dancing body which shape how the dancer moves, or movement material that has been incorporated over time, this gestalt is somewhat mapped before is materialized. Erin Manning describes the moment before it manifests as the preacceleration of the movement, when the potentialities of the gesture collapse and stabilize into form. This form is transient, appearing as a trace that is dissolving as soon as it appears. In her critique of some approaches to collaborations between dance and technology she describes technology as a prosthetic that constrains the dancer's movement by inducing this collapse into stability and thus limiting the potentiality of the technogenetic body of the dancer. Thus the technology becomes the focus rather than the sophisticated sensorial skills of the dancer in movement. Using this challenge as a provocation, I have explored methods for mapping a choreographed phrase of movement from the piece entitled Shared Material on Dying by Irish choreographer, Liz Roche. I will explore the virtual space before this dance is materialized, through the frame of a technogenetic body. I will uncover, through phenomenological enquiry, the constituent elements that are embedded in this virtual map, that is, the associations, sensations and spatio-temporal reference points that have been incorporated over time. The purpose is to point to possible directions in mapping the virtual dance space and to understand choreographed movements not just in terms of their material trace but also in terms of the associations, sensations and perceptions that give a specific choreography its identity. This undertaking has relevance for archiving dance. This presentation will involve danced choreography alongside documented material to explore multiple perspectives on the piece and the experience of dancing it.
Resumo:
This thesis is a morphological study of the settlement patterns of the diverse hill groups in Chittagong Hill Tracts – a mountainous borderland of Bangladesh in South Asia. It examines the settlement morphology of a hill town, using a combination of both quantitative and qualitative methods, and explains the recurrent neighbourhood types of the highland groups in relation to their urbanisation. The research findings related to the settlements of diverse cultural groups in a cross-border region of the Asian uplands are also relevant to similar contexts and enquiries. Furthermore, the developed methodological framework that facilitated the data collection process in CHT's culturally diverse regions is also applicable to the investigation of geographic areas with similar socio-cultural complexities. Finally, this research specifically contributes to the literature of cross-cultural studies of highland towns and vernacular settlements in the Asian context.