509 resultados para Paracalanus quasimodo
Resumo:
Presented are physical and biological data for the region extending from the Barents Sea to the Kara Sea during 158 scientific cruises for the period 1913-1999. Maps with the temporal distribution of physical and biological variables of the Barents and Kara Seas are presented, with proposed quality control criteria for phytoplankton and zooplankton data. Changes in the plankton community structure between the 1930s, 1950s, and 1990s are discussed. Multiple tables of Arctic Seas phytoplankton and zooplankton species are presented, containing ecological and geographic characteristics for each species, and images of live cells for the dominant phytoplankton species.
Resumo:
The Gurile Dunarii 1978 dataset contains zooplankton data collected in May and October 1978 in 14 station allong 3 transect in front of the Danube Delta (45°05' - 44°45'N, 30°02'- 29°27'E). Zooplankton sampling was undertaken at 14 stations where samples were collected using a Juday closing net in the 0-10, 10-20, 20-30, 30-40 and 40-50m layer (depending also on the water masses). The dataset includes samples analysed for mesozooplankton species composition and abundance. Sampling volume was estimated by multiplying the mouth area with the wire length. Taxon-specific mesozooplankton abundance was count under microscope. Total abundance is the sum of the counted individuals. Total biomass Fodder, Rotifera , Ctenophora and Noctiluca was estimated using a tabel with wet weight for each species an stage.
Resumo:
Abundance and species composition of copepods were studied during the expedition ANT XXI/1 on a latitudinal transect in the eastern Atlantic from 34°49.5' N to 27°28.1' S between 2-20 November 2002. Stratified zooplankton tows were carried out at 19 stations with a multiple opening-closing net between 300 m water depth and the surface. Cyclopoid and calanoid copepods showed similar patterns of distribution and abundance. Oithona was the most abundant cyclopoid genus, followed by Oncaea. A total of 149 calanoid copepod species were identified. Clausocalanus was by far the most abundant genus, comprising on average about 45% of all calanoids, followed by Calocalanus (13%), Delibus (9%), Paracalanus (6%), and Pleuromamma (5%). All other genera comprised on average less than 5% each, with 40 genera less than 1%. The calanoid copepod communities were distinguished broadly in accordance with sea surface temperature, separating the subtropical from the tropical stations, and were largely determined by variation in species composition and species abundance. Nine Clausocalanus species were identified. The most numerous Clausocalanus species was C. furcatus, which on average comprised half of all adult of this genus. C. pergens, C. paululus, and C. jobei, contributed an average of 19%, 9%, and 9%, respectively. The Clausocalanus species differed markedly in their horizontal and vertical distributions: C. furcatus, C. jobei, and C. mastigophorus had widespread distributions and inhabited the upper water layers. Major differences between the species were found in abundance. C. paululus and C. arcuicornis were biantitropical and were absent or occurred in very low numbers in the equatorial zone. C. parapergens was found at all stations and showed a bimodal distribution pattern with maxima in the subtropics. C. pergens occurred in higher numbers only at the southern stations, where it replaced C. furcatus in dominance. In contrast to the widespread species, the bulk of the C. paululus, C. arcuicornis, C. parapergens, and C. pergens populations was concentrated in the colder, deeper water layers below the thermocline, thereby avoiding the warm surface waters. C. lividus was found only at the most northern and C. ingens only at the most southern stations. Both species were found almost exclusively in the upper 50 m. The distinct differences in abundance and horizontal and vertical distribution suggest a strong ecological differentiation among the Clausocalanus species.
Resumo:
The metabolic rate of organisms may either be viewed as a basic property from which other vital rates and many ecological patterns emerge and that follows a universal allometric mass scaling law; or it may be considered a property of the organism that emerges as a result of the organism's adaptation to the environment, with consequently less universal mass scaling properties. Data on body mass, maximum ingestion and clearance rates, respiration rates and maximum growth rates of animals living in the ocean epipelagic were compiled from the literature, mainly from original papers but also from previous compilations by other authors. Data were read from tables or digitized from graphs. Only measurements made on individuals of know size, or groups of individuals of similar and known size were included. We show that clearance and respiration rates have life-form-dependent allometries that have similar scaling but different elevations, such that the mass-specific rates converge on a rather narrow size-independent range. In contrast, ingestion and growth rates follow a near-universal taxa-independent ~3/4 mass scaling power law. We argue that the declining mass-specific clearance rates with size within taxa is related to the inherent decrease in feeding efficiency of any particular feeding mode. The transitions between feeding mode and simultaneous transitions in clearance and respiration rates may then represent adaptations to the food environment and be the result of the optimization of tradeoffs that allow sufficient feeding and growth rates to balance mortality.
Resumo:
The metabolic rate of organisms may either be viewed as a basic property from which other vital rates and many ecological patterns emerge and that follows a universal allometric mass scaling law; or it may be considered a property of the organism that emerges as a result of the organism's adaptation to the environment, with consequently less universal mass scaling properties. Data on body mass, maximum ingestion and clearance rates, respiration rates and maximum growth rates of animals living in the ocean epipelagic were compiled from the literature, mainly from original papers but also from previous compilations by other authors. Data were read from tables or digitized from graphs. Only measurements made on individuals of know size, or groups of individuals of similar and known size were included. We show that clearance and respiration rates have life-form-dependent allometries that have similar scaling but different elevations, such that the mass-specific rates converge on a rather narrow size-independent range. In contrast, ingestion and growth rates follow a near-universal taxa-independent ~3/4 mass scaling power law. We argue that the declining mass-specific clearance rates with size within taxa is related to the inherent decrease in feeding efficiency of any particular feeding mode. The transitions between feeding mode and simultaneous transitions in clearance and respiration rates may then represent adaptations to the food environment and be the result of the optimization of tradeoffs that allow sufficient feeding and growth rates to balance mortality.
Resumo:
The Baltic Sea is the largest brackish water area of the world. On the basis of the data from 16 cruises, we show the seasonal and vertical distribution patterns of the appendicularians Fritillaria borealis, Oikopleura dioica and the cyclopoid copepod Oithona similis, in the highly stratified Bornholm Basin. These species live at least temporarily below the permanent halocline and use different life strategies to cope with the brackish environment. The cold-water species F. borealis is abundant in the upper layers of the water column before the thermocline develops. With the formation of the thermocline abundance decreases and the specimens outlast higher temperatures below the halocline. Distribution and strategy suggest that F. borealis might be a glacial relict species in the Baltic Sea. Although Oikopleura dioica is only abundant during summer, O. similis is present all year round. Both species have in common that their vertical distribution is restricted to the waters below the halocline, most likely due to their requirements of higher salinities. We argue that the observed strategies are determined by ecophysiological constraints and life history traits. These species share an omnivorous feeding behaviour and the capability to utilise a spectra of small particles as food. As phytoplankton concentration is negligible below the halocline, we suggest that these species feed on organic material and heterotrophic organisms that accumulate in the density gradient of the halocline. Therefore, the deep haline waters in the Baltic Sea represent a habitat providing shelter from predation and food supply for adapted species that allows them to gather sufficient resources and to maintain populations.
Resumo:
This paper describes the composition and abundance of mesozooplankton of Bahi'a Ushuaia and Bahi'a Golondrina. These small bays are located in the northern Beagle Channel. Sampling was carried out from January 20 to 23, 2001 and samples were collected from the upper layer at nine stations. This study is the first research on mesozooplankton in this part of the Beagle Channel. Due to their dominance in the mesozooplankton community, we compared our Copepoda data with those reported by other authors from Antarctic coastal environments. By applying cluster analysis, we found two station groups in both bays: one in slightly polluted zones and the other in undisturbed external zones. Four assemblages in Bahi'a Ushuaia and two in Bahi'a Golondrina were determined by using non-metric multidimensional scaling (MDS) and cluster analysis. Mesozooplanktonic assemblages showed a certain resemblance in zones with and without anthropogenic influence. Most of the copepod species in our samples are typical of the sub-Antarctic region. Oithona similis (=0. helgolandica sensu Ramirez, 1966), Oncaea curvata, and Ctenocahmus citer show either similar or higher abundances at Antarctic coastal sites, including the upper layer in oceanic areas, in comparison with sub-Antarctic coastal localities. This suggests that, in agreement with other findings, the Polar Front is probably not a major geographic boundary for the distribution of these species.
Resumo:
Increasing abundance of non-commercial sprats and decreasing biomass and landings of commercial anchovies and sardines justify the need to study the feeding ecology and trophic niche overlap of these planktivorous species in the Gulf of Lions. Their diet has been investigated on the basis of stomach content and stable isotope analyses in 2011 and 2012 according to different depths and regions in the study area. The main prey were Corycaeidae copepods, Clauso/Paracalanus, Euterpina acutifrons and Microsetella, for sprats and small copepods, such as Microsetella, Oncaea and Corycaeidae, for anchovies and sardines. This is the first time that the diet of sprats is described in the Gulf of Lions. Sprats fed on a larger size spectrum of prey and seem to be more generalist feeders compared to anchovies and sardines. Ontogenetic changes as well as spatial and temporal variations of the diet occurred in the three species. Stable isotope analysis revealed mobility of sardines and sprats among feeding areas while anchovies exhibited preferred feeding areas. Sprats showed a higher relative condition assessed by C/N ratios than sardines and anchovies. Our results showed an overlap of the trophic niches for the three species, indicating a potential trophic competition in the Gulf of Lions.