854 resultados para Organizational Development and Change


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Although canonical Notch signaling regulates multiple hematopoietic lineage decisions including T cell and marginal zone B cell fate specification, the downstream molecular mediators of Notch function are largely unknown. We showed here that conditional inactivation of Hes1, a well-characterized Notch target gene, in adult murine bone marrow (BM) cells severely impaired T cell development without affecting other Notch-dependent hematopoietic lineages such as marginal zone B cells. Competitive mixed BM chimeras, intrathymic transfer experiments, and in vitro culture of BM progenitors on Delta-like-expressing stromal cells further demonstrated that Hes1 is required for T cell lineage commitment, but dispensable for Notch-dependent thymocyte maturation through and beyond the beta selection checkpoint. Furthermore, our data strongly suggest that Hes1 is essential for the development and maintenance of Notch-induced T cell acute lymphoblastic leukemia. Collectively, our studies identify Hes1 as a critical but context-dependent mediator of canonical Notch signaling in the hematopoietic system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The central and peripheral nervous systems are involved in multiple age-dependent neurological deficits that are often attributed to alterations in function of myelinating glial cells. However, the molecular events that underlie the age-related decline of glial cell function are unknown. We used Schwann cells as a model to study biological processes affected in glial cells by aging. We comprehensively profiled gene expression of the Schwann cellrich mouse sciatic nerve throughout life, from day of birth until senescence (840 days of age). We combined the aging data with the microarray transcriptional data obtained using nerves isolated from Schwann cell-specific neuropathy-inducing mutants MPZCre/+/Lpin1fE2−3/fE2−3 , MPZCre/+/ScapfE1/fE1 and Pmp22-null mice. The majority of age related transcripts were also affected in the analyzed mouse models of neuropathy (54.4%) and in development (59.5%) indicating a high level of overlapping in implicated molecular pathways. We observed that compared to peripheral nerve development, dynamically changing expression profiles in aging have opposite (anticorrelated) orientation while they copy the orientation of transcriptional changes observed in analyzed neuropathy models. Subsequent clustering and biological annotation of dynamically changing transcripts revealed that the processes most significantly deregulated in aging include inflammatory/immune response and lipid biosynthesis/metabolism. Importantly, the changes in these pathways were also observed in myelinated oligodendrocyte-rich optic nerves of aged mice, albeit with lower magnitude. This observation suggests that similar biological processes are affected in aging glial cells in central and peripheral nervous systems, however with different dynamics. Our data, which provide the first comprehensive comparison of molecular changes in glial cells in three distinct biological conditions comprising development, aging and disease, provide not only a new inside into the molecular alterations underlying neural system aging but also identify target pathways for potential therapeutic approaches to prevent or delay complications associated with age-related and inherited forms of neuropathies. *Current address: Department of Physiology, UCSF, San Francisco, CA, USA.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work evaluated the effect of seed size and morphology on the development and biomass of durum wheat seedlings. Three different seed-grading sizes selected by sieving were used in glasshouse experiments, and a set of three developmental and 23 biomass-related indices were measured on eight genotypes, at two moisture levels. The influence of seed size on seedling development was studied at high and low temperatures (22\12 mC, and 15\5 mC day\night temperatures, respectively), in growth chambers. The area of the seed and the area of the embryo were the seed morphological traits most affected by seed size. Seed size was strongly associated with seedling development and seedling biomass until the complete extension of the first two leaves, at the fourth leaf stage. The rate of first-leaf growth and the area of the first leaf were the developmental and biomass traits, respectively, most sensitive to seed-grading size.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The central and peripheral nervous systems are involved in multiple agedependent neurological deficits that are often attributed to alterations in function of myelinating glial cells. However, the molecular events that underlie the age-related decline of glial cell function are unknown. We used Schwann cells as a model to study biological processes affected in glial cells by aging. We comprehensively profiled gene expression of the Schwann cell-rich mouse sciatic nerve throughout life, from day of birth until senescence (840 days of age). We combined the aging data with the microarray transcriptional data obtained using nerves isolated from Schwann cell-specific neuropathy-inducing mutants MPZCre/þ/Lpin1fE2-3/fE2-3, MPZCre/þ/ScapfE1/fE1 and Pmp22-null mice. A majority of age related transcripts were also affected in the analyzed mouse models of neuropathy (54.4%) and in development (59.5%) indicating a high level of overlapping in implicated molecular pathways. We observed that compared to peripheral nerve development, dynamically changing expression profiles in aging have opposite (anticorrelated) orientation while they copy the orientation of transcriptional changes observed in analyzed neuropathy models. Subsequent clustering and biological annotation of dynamically changing transcripts revealed that the processes most significantly deregulated in aging include inflammatory/ immune response and lipid biosynthesis/metabolism. Importantly, the changes in these pathways were also observed in myelinated oligodendrocyte- rich optic nerves of aged mice, albeit with lower magnitude. This observation suggests that similar biological processes are affected in aging glial cells in central and peripheral nervous systems, however with different dynamics. Our data, which provide the first comprehensive comparison of molecular changes in glial cells in three distinct biological conditions comprising development, aging and disease, provide not only a new inside into the molecular alterations underlying neural system aging but also identify target pathways for potential therapeutical approaches to prevent or delay complications associated with age-related and inherited forms of neuropathies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes the main features and present results of MPRO-Spanish, a parser for morphological and syntactic analysis of unrestricted Spanish text developed at the IAI1. This parser makes direct use of X-phrase structure rules to handle a variety of patterns from derivational morphology and syntactic structure. Both analyses, morphological and syntactic, are realised by two subsequent modules. One module analyses and disambiguates the source words at morphological level while the other consists of a series of programs and a deterministic, procedural and explicit grammar. The article explains the main features of MPRO and resumes some of the experiments on some of its applications, some of which still being implemented like the monolingual and bilingual term extraction while others need further work like indexing. The results and applications obtained so far with simple and relatively complex sentences give us grounds to believe in its reliability.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

La présente thèse s'intitule "Développent et Application des Méthodologies Computationnelles pour la Modélisation Qualitative". Elle comprend tous les différents projets que j'ai entrepris en tant que doctorante. Plutôt qu'une mise en oeuvre systématique d'un cadre défini a priori, cette thèse devrait être considérée comme une exploration des méthodes qui peuvent nous aider à déduire le plan de processus regulatoires et de signalisation. Cette exploration a été mue par des questions biologiques concrètes, plutôt que par des investigations théoriques. Bien que tous les projets aient inclus des systèmes divergents (réseaux régulateurs de gènes du cycle cellulaire, réseaux de signalisation de cellules pulmonaires) ainsi que des organismes (levure à fission, levure bourgeonnante, rat, humain), nos objectifs étaient complémentaires et cohérents. Le projet principal de la thèse est la modélisation du réseau de l'initiation de septation (SIN) du S.pombe. La cytokinèse dans la levure à fission est contrôlée par le SIN, un réseau signalant de protéines kinases qui utilise le corps à pôle-fuseau comme échafaudage. Afin de décrire le comportement qualitatif du système et prédire des comportements mutants inconnus, nous avons décidé d'adopter l'approche de la modélisation booléenne. Dans cette thèse, nous présentons la construction d'un modèle booléen étendu du SIN, comprenant la plupart des composantes et des régulateurs du SIN en tant que noeuds individuels et testable expérimentalement. Ce modèle utilise des niveaux d'activité du CDK comme noeuds de contrôle pour la simulation d'évènements du SIN à différents stades du cycle cellulaire. Ce modèle a été optimisé en utilisant des expériences d'un seul "knock-out" avec des effets phénotypiques connus comme set d'entraînement. Il a permis de prédire correctement un set d'évaluation de "knock-out" doubles. De plus, le modèle a fait des prédictions in silico qui ont été validées in vivo, permettant d'obtenir de nouvelles idées de la régulation et l'organisation hiérarchique du SIN. Un autre projet concernant le cycle cellulaire qui fait partie de cette thèse a été la construction d'un modèle qualitatif et minimal de la réciprocité des cyclines dans la S.cerevisiae. Les protéines Clb dans la levure bourgeonnante présentent une activation et une dégradation caractéristique et séquentielle durant le cycle cellulaire, qu'on appelle communément les vagues des Clbs. Cet évènement est coordonné avec la courbe d'activation inverse du Sic1, qui a un rôle inhibitoire dans le système. Pour l'identification des modèles qualitatifs minimaux qui peuvent expliquer ce phénomène, nous avons sélectionné des expériences bien définies et construit tous les modèles minimaux possibles qui, une fois simulés, reproduisent les résultats attendus. Les modèles ont été filtrés en utilisant des simulations ODE qualitatives et standardisées; seules celles qui reproduisaient le phénotype des vagues ont été gardées. L'ensemble des modèles minimaux peut être utilisé pour suggérer des relations regulatoires entre les molécules participant qui peuvent ensuite être testées expérimentalement. Enfin, durant mon doctorat, j'ai participé au SBV Improver Challenge. Le but était de déduire des réseaux spécifiques à des espèces (humain et rat) en utilisant des données de phosphoprotéines, d'expressions des gènes et des cytokines, ainsi qu'un réseau de référence, qui était mis à disposition comme donnée préalable. Notre solution pour ce concours a pris la troisième place. L'approche utilisée est expliquée en détail dans le dernier chapitre de la thèse. -- The present dissertation is entitled "Development and Application of Computational Methodologies in Qualitative Modeling". It encompasses the diverse projects that were undertaken during my time as a PhD student. Instead of a systematic implementation of a framework defined a priori, this thesis should be considered as an exploration of the methods that can help us infer the blueprint of regulatory and signaling processes. This exploration was driven by concrete biological questions, rather than theoretical investigation. Even though the projects involved divergent systems (gene regulatory networks of cell cycle, signaling networks in lung cells), as well as organisms (fission yeast, budding yeast, rat, human), our goals were complementary and coherent. The main project of the thesis is the modeling of the Septation Initiation Network (SIN) in S.pombe. Cytokinesis in fission yeast is controlled by the SIN, a protein kinase signaling network that uses the spindle pole body as scaffold. In order to describe the qualitative behavior of the system and predict unknown mutant behaviors we decided to adopt a Boolean modeling approach. In this thesis, we report the construction of an extended, Boolean model of the SIN, comprising most SIN components and regulators as individual, experimentally testable nodes. The model uses CDK activity levels as control nodes for the simulation of SIN related events in different stages of the cell cycle. The model was optimized using single knock-out experiments of known phenotypic effect as a training set, and was able to correctly predict a double knock-out test set. Moreover, the model has made in silico predictions that have been validated in vivo, providing new insights into the regulation and hierarchical organization of the SIN. Another cell cycle related project that is part of this thesis was to create a qualitative, minimal model of cyclin interplay in S.cerevisiae. CLB proteins in budding yeast present a characteristic, sequential activation and decay during the cell cycle, commonly referred to as Clb waves. This event is coordinated with the inverse activation curve of Sic1, which has an inhibitory role in the system. To generate minimal qualitative models that can explain this phenomenon, we selected well-defined experiments and constructed all possible minimal models that, when simulated, reproduce the expected results. The models were filtered using standardized qualitative ODE simulations; only the ones reproducing the wave-like phenotype were kept. The set of minimal models can be used to suggest regulatory relations among the participating molecules, which will subsequently be tested experimentally. Finally, during my PhD I participated in the SBV Improver Challenge. The goal was to infer species-specific (human and rat) networks, using phosphoprotein, gene expression and cytokine data and a reference network provided as prior knowledge. Our solution to the challenge was selected as in the final chapter of the thesis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Careers today increasingly require engagement in proactive career behaviors; however, there is a lack of validated measures assessing the general degree to which somebody is engaged in such career behaviors. We describe the results of six studies with six independent samples of German university students (total N = 2,854), working professionals (total N = 561), and university graduates (N = 141) that report the development and validation of the Career Engagement Scale - a measure of the degree to which somebody is proactively developing her or his career as expressed by diverse career behaviors. The studies provide support for measurement invariance across gender and time. In support of convergent and discriminant validity, we find that career engagement is more prevalent among working professionals than among university students and that this scale has incremental validity above several specific career behaviors regarding its relation to vocational identity clarity and career self-efficacy beliefs among students and to job and career satisfaction among employees. In support of incremental predictive validity, beyond the effects of several more specific career behaviors, career engagement while at university predicts higher job and career satisfaction several months later after beginning work.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Congenital heart defect (CHD) has a major influence on affected individuals as well as on the supportive and associated environment such as the immediate family. Unfortunately, CHD is common worldwide with an incidence of approximately 1% and consequently is a major health concern. The Arab population has a high rate of consanguinity, fertility, birth, and annual population growth, in addition to a high incidence of diabetes mellitus and obesity. All these factors may lead to a higher incidence and prevalence of CHD within the Arab population than in the rest of the world, making CHD of even greater concern. Sadly, most Arab countries lack appropriate public health measures directed toward the control and prevention of congenital malformations and so the importance of CHD within the population remains unknown but is thought to be high. In approximately 85% of CHD patients, the multifactorial theory is considered as the pathologic basis. The genetic risk factors for CHD can be attributed to large chromosomal aberrations, copy number variations (CNV) of particular regions in the chromosome, and gene mutations in specific nuclear transcription pathways and in the genes that are involved in cardiac structure and development. The application of modern molecular biology techniques such as high-throughput nucleotide sequencing and chromosomal array and methylation array all have the potential to reveal more genetic defects linked to CHD. Exploring the genetic defects in CHD pathology will improve our knowledge and understanding about the diverse pathways involved and also about the progression of this disease. Ultimately, this will link to more efficient genetic diagnosis and development of novel preventive therapeutic strategies, as well as gene-targeted clinical management. This review summarizes our current understanding of the molecular basis of normal heart development and the pathophysiology of a wide range of CHD. The risk factors that might account for the high prevalence of CHD within the Arab population and the measures required to be undertaken for conducting research into CHD in Arab countries will also be discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Main purpose of this thesis is to introduce a new lossless compression algorithm for multispectral images. Proposed algorithm is based on reducing the band ordering problem to the problem of finding a minimum spanning tree in a weighted directed graph, where set of the graph vertices corresponds to multispectral image bands and the arcs’ weights have been computed using a newly invented adaptive linear prediction model. The adaptive prediction model is an extended unification of 2–and 4–neighbour pixel context linear prediction schemes. The algorithm provides individual prediction of each image band using the optimal prediction scheme, defined by the adaptive prediction model and the optimal predicting band suggested by minimum spanning tree. Its efficiency has been compared with respect to the best lossless compression algorithms for multispectral images. Three recently invented algorithms have been considered. Numerical results produced by these algorithms allow concluding that adaptive prediction based algorithm is the best one for lossless compression of multispectral images. Real multispectral data captured from an airplane have been used for the testing.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A large part of the mammalian genome is transcribed into noncoding RNAs. Long noncoding RNAs (lncRNAs) have emerged as critical epigenetic regulators of gene expression. Distinct molecular mechanisms allow lncRNAs either to activate or to repress gene expression, thereby participating in the regulation of cellular and tissue function. LncRNAs, therefore, have important roles in healthy and diseased hearts, and might be targets for therapeutic intervention. In this Review, we summarize the current knowledge of the roles of lncRNAs in cardiac development and ageing. After describing the definition and classification of lncRNAs, we present an overview of the mechanisms by which lncRNAs regulate gene expression. We discuss the multiple roles of lncRNAs in the heart, and focus on the regulation of embryonic stem cell differentiation, cardiac cell fate and development, and cardiac ageing. We emphasize the importance of chromatin remodelling in this regulation. Finally, we discuss the therapeutic and biomarker potential of lncRNAs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The lymphatic system maintains tissue fluid balance, and dysfunction of lymphatic vessels and valves causes human lymphedema syndromes. Yet, our knowledge of the molecular mechanisms underlying lymphatic vessel development is still limited. Here, we show that cyclin-dependent kinase 5 (Cdk5) is an essential regulator of lymphatic vessel development. Endothelial-specific Cdk5 knockdown causes congenital lymphatic dysfunction and lymphedema due to defective lymphatic vessel patterning and valve formation. We identify the transcription factor Foxc2 as a key substrate of Cdk5 in the lymphatic vasculature, mechanistically linking Cdk5 to lymphatic development and valve morphogenesis. Collectively, our findings show that Cdk5-Foxc2 interaction represents a critical regulator of lymphatic vessel development and the transcriptional network underlying lymphatic vascular remodeling.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The key information processing units within gene regulatory networks are enhancers. Enhancer activity is associated with the production of tissue-specific noncoding RNAs, yet the existence of such transcripts during cardiac development has not been established. Using an integrated genomic approach, we demonstrate that fetal cardiac enhancers generate long noncoding RNAs (lncRNAs) during cardiac differentiation and morphogenesis. Enhancer expression correlates with the emergence of active enhancer chromatin states, the initiation of RNA polymerase II at enhancer loci and expression of target genes. Orthologous human sequences are also transcribed in fetal human hearts and cardiac progenitor cells. Through a systematic bioinformatic analysis, we identified and characterized, for the first time, a catalog of lncRNAs that are expressed during embryonic stem cell differentiation into cardiomyocytes and associated with active cardiac enhancer sequences. RNA-sequencing demonstrates that many of these transcripts are polyadenylated, multi-exonic long noncoding RNAs. Moreover, knockdown of two enhancer-associated lncRNAs resulted in the specific downregulation of their predicted target genes. Interestingly, the reactivation of the fetal gene program, a hallmark of the stress response in the adult heart, is accompanied by increased expression of fetal cardiac enhancer transcripts. Altogether, these findings demonstrate that the activity of cardiac enhancers and expression of their target genes are associated with the production of enhancer-derived lncRNAs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Heterozygous germline mutations in the zinc finger transcription factor GATA2 have recently been shown to underlie a range of clinical phenotypes, including Emberger syndrome, a disorder characterized by lymphedema and predisposition to myelodysplastic syndrome/acute myeloid leukemia (MDS/AML). Despite well-defined roles in hematopoiesis, the functions of GATA2 in the lymphatic vasculature and the mechanisms by which GATA2 mutations result in lymphedema have not been characterized. Here, we have provided a molecular explanation for lymphedema predisposition in a subset of patients with germline GATA2 mutations. Specifically, we demonstrated that Emberger-associated GATA2 missense mutations result in complete loss of GATA2 function, with respect to the capacity to regulate the transcription of genes that are important for lymphatic vessel valve development. We identified a putative enhancer element upstream of the key lymphatic transcriptional regulator PROX1 that is bound by GATA2, and the transcription factors FOXC2 and NFATC1. Emberger GATA2 missense mutants had a profoundly reduced capacity to bind this element. Conditional Gata2 deletion in mice revealed that GATA2 is required for both development and maintenance of lymphovenous and lymphatic vessel valves. Together, our data unveil essential roles for GATA2 in the lymphatic vasculature and explain why a select catalogue of human GATA2 mutations results in lymphedema.