953 resultados para Open clusters and associations: general
Resumo:
Granular matter, also known as bulk solids, consists of discrete particles with sizes between micrometers and meters. They are present in many industrial applications as well as daily life, like in food processing, pharmaceutics or in the oil and mining industry. When handling granular matter the bulk solids are stored, mixed, conveyed or filtered. These techniques are based on observations in macroscopic experiments, i.e. rheological examinations of the bulk properties. Despite the amply investigations of bulk mechanics, the relation between single particle motion and macroscopic behavior is still not well understood. For exploring the microscopic properties on a single particle level, 3D imaging techniques are required.rnThe objective of this work was the investigation of single particle motions in a bulk system in 3D under an external mechanical load, i.e. compression and shear. During the mechanical load the structural and dynamical properties of these systems were examined with confocal microscopy. Therefor new granular model systems in the wet and dry state were designed and prepared. As the particles are solid bodies, their motion is described by six degrees of freedom. To explore their entire motion with all degrees of freedom, a technique to visualize the rotation of spherical micrometer sized particles in 3D was developed. rnOne of the foci during this dissertation was a model system for dry cohesive granular matter. In such systems the particle motion during a compression of the granular matter was investigated. In general the rotation of single particles was the more sensitive parameter compared to the translation. In regions with large structural changes the rotation had an earlier onset than the translation. In granular systems under shear, shear dilatation and shear zone formation were observed. Globally the granular sediments showed a shear behavior, which was known already from classical shear experiments, for example with Jenike cells. Locally the shear zone formation was enhanced, when near the applied load a pre-diluted region existed. In regions with constant volume fraction a mixing between the different particle layers occurred. In particular an exchange of particles between the current flowing region and the non-flowing region was observed. rnThe second focus was on model systems for wet granular matter, where an additional binding liquid is added to the particle suspension. To examine the 3D structure of the binding liquid on the micrometer scale independently from the particles, a second illumination and detection beam path was implemented. In shear and compression experiments of wet clusters and bulk systems completely different dynamics compared to dry cohesive models systems occured. In a Pickering emulsion-like system large structural changes predominantly occurred in the local environment of binding liquid droplets. These large local structural changes were due to an energy interplay between the energy stored in the binding droplet during its deformation and the binding energy of particles at the droplet interface. rnConfocal microscopy in combination with nanoindentation gave new insights into the single particle motions and dynamics of granular systems under a mechanical load. These novel experimental results can help to improve the understanding of the relationship between bulk properties of granular matter, such as volume fraction or yield stress and the dynamics on a single particle level.rnrn
Resumo:
In this Thesis work we have studied the properties of high-redshift galaxy clusters through the X-ray emission from their intracluster gas. In particular, we have focused on the relation between concentration and mass that is related to the density of the universe at the formation time of the clusters and therefore, it is a powerful cosmological probe. Concentration is expected to be a decreasing function of mass but a complete characterization of this relation has not been reached yet. We have analysed 22 clusters observed withe the Chandra satellite at high redshift and we have investigated the concentration-mass relation.
Resumo:
Tobacco use has been identified as a major risk factor for oral disorders such as cancer and periodontal disease. Tobacco use cessation (TUC) is associated with the potential for reversal of precancer, enhanced outcomes following periodontal treatment, and better periodontal status compared to patients who continue to smoke. Consequently, helping tobacco users to quit has become a part of both the responsibility of oral health professionals and the general practice of dentistry. TUC should consist of behavioural support, and if accompanied by pharmacotherapy, is more likely to be successful. It is widely accepted that appropriate compensation of TUC counselling would give oral health professionals greater incentives to provide these measures. Therefore, TUC-related compensation should be made accessible to all dental professionals and be in appropriate relation to other therapeutic interventions. International and national associations for oral health professionals are urged to act as advocates to promote population, community and individual initiatives in support of tobacco use prevention and cessation (TUPAC) counselling, including integration in undergraduate and graduate dental curricula. In order to facilitate the adoption of TUPAC strategies by oral health professionals, we propose a level of care model which includes 1) basic care: brief interventions for all patients in the dental practice to identify tobacco users, assess readiness to quit, and request permission to re-address at a subsequent visit, 2) intermediate care: interventions consisting of (brief) motivational interviewing sessions to build on readiness to quit, enlist resources to support change, and to include cessation medications, and 3) advanced care: intensive interventions to develop a detailed quit plan including the use of suitable pharmacotherapy. To ensure that the delivery of effective TUC becomes part of standard care, continuing education courses and updates should be implemented and offered to all oral health professionals on a regular basis.
Resumo:
Background To assess the criterion and construct validity of the KIDSCREEN-10 well-being and health-related quality of life (HRQoL) score, a short version of the KIDSCREEN-52 and KIDSCREEN-27 instruments. Methods The child self-report and parent report versions of the KIDSCREEN-10 were tested in a sample of 22,830 European children and adolescents aged 8–18 and their parents (n = 16,237). Correlation with the KIDSCREEN-52 and associations with other generic HRQoL measures, physical and mental health, and socioeconomic status were examined. Score differences by age, gender, and country were investigated. Results Correlations between the 10-item KIDSCREEN score and KIDSCREEN-52 scales ranged from r = 0.24 to 0.72 (r = 0.27–0.72) for the self-report version (proxy-report version). Coefficients below r = 0.5 were observed for the KIDSCREEN-52 dimensions Financial Resources and Being Bullied only. Cronbach alpha was 0.82 (0.78), test–retest reliability was ICC = 0.70 (0.67) for the self- (proxy-)report version. Correlations between other children self-completed HRQoL questionnaires and KIDSCREEN-10 ranged from r = 0.43 to r = 0.63 for the KIDSCREEN children self-report and r = 0.22–0.40 for the KIDSCREEN parent proxy report. Known group differences in HRQoL between physically/mentally healthy and ill children were observed in the KIDSCREEN-10 self and proxy scores. Associations with self-reported psychosomatic complaints were r = −0.52 (−0.36) for the KIDSCREEN-10 self-report (proxy-report). Statistically significant differences in KIDSCREEN-10 self and proxy scores were found by socioeconomic status, age, and gender. Conclusions Our results indicate that the KIDSCREEN-10 provides a valid measure of a general HRQoL factor in children and adolescents, but the instrument does not represent well most of the single dimensions of the original KIDSCREEN-52. Test–retest reliability was slightly below a priori defined thresholds.
Resumo:
Background Primary care is an important provider of sexual health care in England. We sought to explore the extent of testing for chlamydia and HIV in general practice and its relation to associated measures of sexual health in two contrasting geographical settings. Methods We analysed chlamydia and HIV testing data from 64 general practices and one genitourinary medicine (GUM) clinic in Brent (from mid-2003 to mid-2006) and 143 general practices and two GUM clinics in Avon (2004). We examined associations between practice testing status, practice characteristics and hypothesised markers of population need (area level teenage conception rates and Index of Multiple Deprivation, IMD scores). Results No HIV or chlamydia testing was done in 19% (12/64) of general practices in Brent, compared to 2.1% (3/143) in Avon. In Brent, the mean age of general practitioners (GPs) in Brent practices that tested for chlamydia or HIV was lower than in those that had not conducted testing. Practices where no HIV testing was done had slightly higher local teenage conception rates (median 23.5 vs. 17.4/1000 women aged 15-44, p = 0.07) and served more deprived areas (median IMD score 27.1 vs. 21.8, p = 0.05). Mean yearly chlamydia and HIV testing rates, in practices that did test were 33.2 and 0.6 (per 1000 patients aged 15-44 years) in Brent, and 34.1 and 10.3 in Avon, respectively. In Brent practices only 20% of chlamydia tests were conducted in patients aged under 25 years, compared with 39% in Avon. Conclusions There are substantial geographical differences in the intensity of chlamydia and HIV testing in general practice. Interventions to facilitate sexually transmitted infection and HIV testing in general practice are needed to improve access to effective sexual health care. The use of routinely-collected laboratory, practice-level and demographic data for monitoring sexual health service provision and informing service planning should be more widely evaluated.
Resumo:
The Gaussian-2, Gaussian-3, Complete Basis Set-QB3, and Complete Basis Set-APNO methods have been used to calculate geometries of neutral clusters of water, (H2O)n, where n = 2–6. The structures are in excellent agreement with those determined from experiment and those predicted from previous high-level calculations. These methods also provide excellent thermochemical predictions for water clusters, and thus can be used with confidence in evaluating the structures and thermochemistry of water clusters.
Resumo:
A mixed molecular dynamics/quantum mechanics model has been applied to the ammonium/water clustering system. The use of the high level MP2 calculation method and correlated basis sets, such as aug-cc-pVDZ and aug-cc-pVTZ, lends confidence in the accuracy of the extrapolated energies. These calculations provide electronic and free energies for the formation of clusters of ammonium and 1−10 water molecules at two different temperatures. Structures and thermodynamic values are in good agreement with previous experimental and theoretical results. The estimated concentration of these clusters in the troposphere was calculated using atmospheric amounts of ammonium and water. Results show the favorability of forming these clusters and implications for ion-induced nucleation in the atmosphere.
Resumo:
To provide insight into the recently published cost comparisons in the context of open, laparoscopic, and robotic-assisted laparoscopic radical cystectomy and to demonstrate the complexity of such economic analyses.
Resumo:
BACKGROUND: This project is part of an evaluation of complementary and alternative medicine (CAM) aimed at providing a scientific basis for the Swiss Government to include 5 CAM methods in basic health coverage: anthroposophic medicine, homeopathy, neural therapy, phytotherapy and Traditional Chinese Medicine (TCM). OBJECTIVES: The objective was to explore the philosophy of care (convictions and values, priorities in medical activity, motivation for CAM, criteria for the practice of CAM, limits of the used methods) of conventional and CAM general practitioners (GPs) and to determine differences between both groups. MATERIALS AND METHODS: This study was a cross-sectional survey of a representative sample of 623 GPs who provide complementary or conventional primary care. A mailed questionnaire with open-ended questions focusing on the philosophy of care was used for data collection. An appropriate methodology using a combination of quantitative and qualitative approaches was developed. RESULTS: Significant differences between both groups include philosophy of care (holistic versus positivistic approaches), motivation for CAM (intrinsic versus extrinsic) and priorities in medical activity. Both groups seem to be aware of limitations of the therapeutic methods used. The study reveals that conventional physicians are also using complementary medicine. DISCUSSION: Our study provides a wealth of data documenting several aspects of physicians' philosophy of care as well as differences and similarities between conventional and complementary care. Implications of the study with regard to quality of care as well as ethical and health policy issues should be investigated further.
Resumo:
Latent class regression models are useful tools for assessing associations between covariates and latent variables. However, evaluation of key model assumptions cannot be performed using methods from standard regression models due to the unobserved nature of latent outcome variables. This paper presents graphical diagnostic tools to evaluate whether or not latent class regression models adhere to standard assumptions of the model: conditional independence and non-differential measurement. An integral part of these methods is the use of a Markov Chain Monte Carlo estimation procedure. Unlike standard maximum likelihood implementations for latent class regression model estimation, the MCMC approach allows us to calculate posterior distributions and point estimates of any functions of parameters. It is this convenience that allows us to provide the diagnostic methods that we introduce. As a motivating example we present an analysis focusing on the association between depression and socioeconomic status, using data from the Epidemiologic Catchment Area study. We consider a latent class regression analysis investigating the association between depression and socioeconomic status measures, where the latent variable depression is regressed on education and income indicators, in addition to age, gender, and marital status variables. While the fitted latent class regression model yields interesting results, the model parameters are found to be invalid due to the violation of model assumptions. The violation of these assumptions is clearly identified by the presented diagnostic plots. These methods can be applied to standard latent class and latent class regression models, and the general principle can be extended to evaluate model assumptions in other types of models.
Resumo:
Large parts of the world are subjected to one or more natural hazards, such as earthquakes, tsunamis, landslides, tropical storms (hurricanes, cyclones and typhoons), costal inundation and flooding. Virtually the entire world is at risk of man-made hazards. In recent decades, rapid population growth and economic development in hazard-prone areas have greatly increased the potential of multiple hazards to cause damage and destruction of buildings, bridges, power plants, and other infrastructure; thus posing a grave danger to the community and disruption of economic and societal activities. Although an individual hazard is significant in many parts of the United States (U.S.), in certain areas more than one hazard may pose a threat to the constructed environment. In such areas, structural design and construction practices should address multiple hazards in an integrated manner to achieve structural performance that is consistent with owner expectations and general societal objectives. The growing interest and importance of multiple-hazard engineering has been recognized recently. This has spurred the evolution of multiple-hazard risk-assessment frameworks and development of design approaches which have paved way for future research towards sustainable construction of new and improved structures and retrofitting of the existing structures. This report provides a review of literature and the current state of practice for assessment, design and mitigation of the impact of multiple hazards on structural infrastructure. It also presents an overview of future research needs related to multiple-hazard performance of constructed facilities.
Resumo:
Life-Patterns on the Periphery: A Humanities Base for Development Imperatives and their Application in the Chicago City-Region is informed by the need to bring diverse fields together in order to tackle issues related to the contemporary city-region. By honouring the long-term economic, social, political, and ecological imperatives that form the fabric of healthy, productive, sustainable communities, it becomes possible to setup political structures and citizen will to develop distinct places that result in the overlapping of citizen life patterns, setting the stage for citizen action and interaction. Based in humanities scholarship, the four imperatives act as checks on each other so that no one imperative is solely honoured in development. Informed by Heidegger, Arendt, deCerteau, Casey, and others, their foundation in the humanities underlines their importance, while at the same time creating a stage where all fields can contribute to actualizing this balance in practice. For this project, theoretical assistance has been greatly borrowed from architecture, planning theory, urban theory, and landscape urbanism, including scholarship from Saskia Sassen, John Friedmann, William Cronon, Jane Jacobs, Joel Garreau, Alan Berger, and many others. This project uses the Chicago city-region as a site, specifically the Interstate 80 and 88 corridors extending west from Chicago. Both transportation corridors are divided into study regions, providing the opportunity to examine a broad variety of population and development densities. Through observational research, a picture of each study region can be extrapolated, analyzed, and understood with respect to the four imperatives. This is put to use in this project by studying region-specific suggestions for future development moves, culminating in some universal steps that can be taken to develop stronger communities and set both the research site specifically and North American city-regions in general on a path towards healthy, productive, sustainable development.
Resumo:
The past decade has seen the energy consumption in servers and Internet Data Centers (IDCs) skyrocket. A recent survey estimated that the worldwide spending on servers and cooling have risen to above $30 billion and is likely to exceed spending on the new server hardware . The rapid rise in energy consumption has posted a serious threat to both energy resources and the environment, which makes green computing not only worthwhile but also necessary. This dissertation intends to tackle the challenges of both reducing the energy consumption of server systems and by reducing the cost for Online Service Providers (OSPs). Two distinct subsystems account for most of IDC’s power: the server system, which accounts for 56% of the total power consumption of an IDC, and the cooling and humidifcation systems, which accounts for about 30% of the total power consumption. The server system dominates the energy consumption of an IDC, and its power draw can vary drastically with data center utilization. In this dissertation, we propose three models to achieve energy effciency in web server clusters: an energy proportional model, an optimal server allocation and frequency adjustment strategy, and a constrained Markov model. The proposed models have combined Dynamic Voltage/Frequency Scaling (DV/FS) and Vary-On, Vary-off (VOVF) mechanisms that work together for more energy savings. Meanwhile, corresponding strategies are proposed to deal with the transition overheads. We further extend server energy management to the IDC’s costs management, helping the OSPs to conserve, manage their own electricity cost, and lower the carbon emissions. We have developed an optimal energy-aware load dispatching strategy that periodically maps more requests to the locations with lower electricity prices. A carbon emission limit is placed, and the volatility of the carbon offset market is also considered. Two energy effcient strategies are applied to the server system and the cooling system respectively. With the rapid development of cloud services, we also carry out research to reduce the server energy in cloud computing environments. In this work, we propose a new live virtual machine (VM) placement scheme that can effectively map VMs to Physical Machines (PMs) with substantial energy savings in a heterogeneous server cluster. A VM/PM mapping probability matrix is constructed, in which each VM request is assigned with a probability running on PMs. The VM/PM mapping probability matrix takes into account resource limitations, VM operation overheads, server reliability as well as energy effciency. The evolution of Internet Data Centers and the increasing demands of web services raise great challenges to improve the energy effciency of IDCs. We also express several potential areas for future research in each chapter.
Resumo:
The lack of access to sufficient water and sanitation facilities is one of the largest hindrances towards the sustainable development of the poorest 2.2 billion people in the world. Rural Uganda is one of the areas where such inaccessibility is seriously hampering their efforts at development. Many rural Ugandans must travel several kilometers to fetch adequate water and many still do not have adequate sanitation facilities. Such poor access to clean water forces Ugandans to spend an inordinate amount of time and energy collecting water - time and energy that could be used for more useful endeavors. Furthermore, the difficulty in getting water means that people use less water than they need to for optimal health and well-being. Access to other sanitation facilities can also have a large impact, particularly on the health of young children and the elderly whose immune systems are less than optimal. Hand-washing, presence of a sanitary latrine, general household cleanliness, maintenance of the safe water chain and the households’ knowledge about and adherence to sound sanitation practices may be as important as access to clean water sources. This report investigates these problems using the results from two different studies. It first looks into how access to water affects peoples’ use of it. In particular it investigates how much water households use as a function of perceived effort to fetch it. Operationally, this was accomplished by surveying nearly 1,500 residents in three different districts around Uganda about their water usage and the time and distance they must travel to fetch it. The study found that there is no statistically significant correlation between a family’s water usage and the perceived effort they must put forth to have to fetch it. On average, people use around 15 liters per person per day. Rural Ugandan residents apparently require a certain amount of water and will travel as far or as long as necessary to collect it. Secondly, a study entitled “What Works Best in Diarrheal Disease Prevention?” was carried out to study the effectiveness of five different water and sanitation facilities in reducing diarrheal disease incidences amongst children under five. It did this by surveying five different communities before and after the implementation of improvements to find changes in diarrheal disease incidences amongst children under five years of age. It found that household water treatment devices provide the best means of preventing diarrheal diseases. This is likely because water often becomes contaminated before it is consumed even if it was collected from a protected source.
Resumo:
Renewable energy is growing in demand, and thus the the manufacture of solar cells and photovoltaic arrays has advanced dramatically in recent years. This is proved by the fact that the photovoltaic production has doubled every 2 years, increasing by an average of 48% each year since 2002. Covering the general overview of solar cell working, and its model, this thesis will start with the three generations of photovoltaic solar cell technology, and move to the motivation of dedicating research to nanostructured solar cell. For the current generation solar cells, among several factors, like photon capture, photon reflection, carrier generation by photons, carrier transport and collection, the efficiency also depends on the absorption of photons. The absorption coefficient,α, and its dependence on the wavelength, λ, is of major concern to improve the efficiency. Nano-silicon structures (quantum wells and quantum dots) have a unique advantage compared to bulk and thin film crystalline silicon that multiple direct and indirect band gaps can be realized by appropriate size control of the quantum wells. This enables multiple wavelength photons of the solar spectrum to be absorbed efficiently. There is limited research on the calculation of absorption coefficient in nano structures of silicon. We present a theoretical approach to calculate the absorption coefficient using quantum mechanical calculations on the interaction of photons with the electrons of the valence band. One model is that the oscillator strength of the direct optical transitions is enhanced by the quantumconfinement effect in Si nanocrystallites. These kinds of quantum wells can be realized in practice in porous silicon. The absorption coefficient shows a peak of 64638.2 cm-1 at = 343 nm at photon energy of ξ = 3.49 eV ( = 355.532 nm). I have shown that a large value of absorption coefficient α comparable to that of bulk silicon is possible in silicon QDs because of carrier confinement. Our results have shown that we can enhance the absorption coefficient by an order of 10, and at the same time a nearly constant absorption coefficient curve over the visible spectrum. The validity of plots is verified by the correlation with experimental photoluminescence plots. A very generic comparison for the efficiency of p-i-n junction solar cell is given for a cell incorporating QDs and sans QDs. The design and fabrication technique is discussed in brief. I have shown that by using QDs in the intrinsic region of a cell, we can improve the efficiency by a factor of 1.865 times. Thus for a solar cell of efficiency of 26% for first generation solar cell, we can improve the efficiency to nearly 48.5% on using QDs.