897 resultados para Normalisation and Difference
Resumo:
Vertical number fluxes of aerosol particles and vertical fluxes of CO(2) were measured with the eddy covariance method at the top of a 53 m high tower in the Amazon rain forest as part of the LBA (The Large Scale Biosphere Atmosphere Experiment in Amazonia) experiment. The observed aerosol number fluxes included particles with sizes down to 10 nm in diameter. The measurements were carried out during the wet and dry season in 2008. In this study focus is on the dry season aerosol fluxes, with significant influence from biomass burning, and these are compared with aerosol fluxes measured during the wet season. Net particle deposition fluxes dominated in daytime in both seasons and the deposition flux was considerably larger in the dry season due to the much higher dry season particle concentration. The particle transfer velocity increased linearly with increasing friction velocity in both seasons. The difference in transfer velocity between the two seasons was small, indicating that the seasonal change in aerosol number size distribution is not enough for causing any significant change in deposition velocity. In general, particle transfer velocities in this study are low compared to studies over boreal forests. The reasons are probably the high percentage of accumulation mode particles and the low percentage of nucleation mode particles in the Amazon boundary layer, both in the dry and wet season, and low wind speeds in the tropics compared to the midlatitudes. In the dry season, nocturnal particle fluxes behaved very similar to the nocturnal CO(2) fluxes. Throughout the night, the measured particle flux at the top of the tower was close to zero, but early in the morning there was an upward particle flux peak that is not likely a result of entrainment or local pollution. It is possible that these morning upward particle fluxes are associated with emission of primary biogenic particles from the rain forest. Emitted particles may be stored within the canopy during stable conditions at nighttime, similarly to CO(2), and being released from the canopy when conditions become more turbulent in the morning.
Resumo:
The melting temperature and the crystallization temperature of Bi nanoclusters confined in a sodium borate glass were experimentally determined as functions of the cluster radius. The results indicate that, on cooling, liquid Bi nanodroplets exhibit a strong undercooling effect for a wide range of radii. The difference between the melting temperature and the freezing temperature decreases for decreasing radius and vanishes for Bi nanoparticles with a critical radius R = 1.9 nm. The magnitude of the variation in density across the melting and freezing transitions for Bi nanoparticles with R = 2 nm is 40% smaller than for bulk Bi. These experimental results support a basic core-shell model for the structure of Bi nanocrystals consisting of a central crystalline volume surrounded by a structurally disordered shell. The volume fraction of the crystalline core decreases for decreasing nanoparticle radius and vanishes for R = 1.9 nm. Thus, on cooling, the liquid nanodroplets with R < 1.9 nm preserve, across the liquid-to-solid transformation, their homogeneous and disordered structure without crystalline core.
Resumo:
Perturbative Quantum Chromodynamics (pQCD) predicts that the small-x gluons in the hadron wavefunction should form a Color Glass Condensate (CGC), which has universal properties, which are the same for nucleon or nuclei. Making use of the results in V.P. Goncalves, M.S. Kugeratski, M.V.T. Machado, F.S. Navarra, Phys. Lett. B643, 273 (2006), we study the behavior of the anomalous dimension in the saturation models as a function of the photon virtuality and of the scaling variable rQ(s), since the main difference among the known parameterizations are characterized by this quantity.
Resumo:
We present precise tests of CP and CPT symmetry based on the full data set of K -> pi pi decays collected by the KTeV experiment at Fermi National Accelerator Laboratory during 1996, 1997, and 1999. This data set contains 16 x 10(6) K -> pi(0)pi(0) and 69 x 10(6) K -> pi(+)pi(-) decays. We measure the direct CP violation parameter Re(epsilon'/epsilon) = (19.2 +/- 2.1) x 10(-4). We find the K(L) -> K(S) mass difference Delta m = (5270 +/- 12) x 10(6) (h) over tilde s(-1) and the K(S) lifetime tau(S) = (89.62 +/- 0.05) x 10(-12) s. We also measure several parameters that test CPT invariance. We find the difference between the phase of the indirect CP violation parameter epsilon and the superweak phase: phi(epsilon) - phi(SW) =(0.40 +/- 0.56)degrees. We measure the difference of the relative phases between the CP violating and CP conserving decay amplitudes for K -> pi(+)pi(-) (phi(+-)) and for K -> pi(0)pi(0) (phi(00)): Delta phi = (0.30 +/- 0.35)degrees. From these phase measurements, we place a limit on the mass difference between K(0) and (K) over bar (0): Delta M < 4.8 x 10(-19) GeV/c(2) at 95% C.L. These results are consistent with those of other experiments, our own earlier measurements, and CPT symmetry.
Resumo:
The PHENIX experiment at the Relativistic Heavy Ion Collider has performed systematic measurements of phi meson production in the K(+)K(-) decay channel at midrapidity in p + p, d + Au, Cu + Cu, and Au + Au collisions at root s(NN) = 200 GeV. Results are presented on the phi invariant yield and the nuclear modification factor R(AA) for Au + Au and Cu + Cu, and R(dA) for d + Au collisions, studied as a function of transverse momentum (1 < p(T) < 7 GeV/c) and centrality. In central and midcentral Au + Au collisions, the R(AA) of phi exhibits a suppression relative to expectations from binary scaled p + p results. The amount of suppression is smaller than that of the pi(0) and the. in the intermediate p(T) range (2-5 GeV/c), whereas, at higher p(T), the phi, pi(0), and. show similar suppression. The baryon (proton and antiproton) excess observed in central Au + Au collisions at intermediate p(T) is not observed for the phi meson despite the similar masses of the proton and the phi. This suggests that the excess is linked to the number of valence quarks in the hadron rather than its mass. The difference gradually disappears with decreasing centrality, and, for peripheral collisions, the R(AA) values for both particle species are consistent with binary scaling. Cu + Cu collisions show the same yield and suppression as Au + Au collisions for the same number of N(part). The R(dA) of phi shows no evidence for cold nuclear effects within uncertainties.
Resumo:
A phonon structure in the photoluminescence of EuTe was discovered, with a well-defined zero-phonon emission line (ZPL). The ZPL redshifts linearly with the intensity of applied magnetic field, indicating spin relaxation of the photoexcited electron, and saturates at a lower magnetic field than the optical absorption bandgap, which is attributed to formation of magnetic polarons. From the difference in these saturation fields, the zero-field polaron binding energy and radius are estimated to be 43 meV and 3.2 (in units of the EuTe lattice parameter), respectively. (C) 2011 American Institute of Physics. [doi:10.1063/1.3634030]
Resumo:
The local site symmetry of Ce(3+) ions in the diluted magnetic semiconductors Pb(1-x)Ce(x)A (A=S, Se, and Te) has been investigated by electron-paramagnetic resonance (EPR). The experiments were carried out on single crystals with cerium concentration x ranging from 0.001 to 0.035. The isotropic line due to Ce(3+) ions located at the substitutional Pb cation site with octahedral symmetry was observed for all the studied samples. We determined the effective Lande factors to be g=1.333, 1.364, and 1.402 for A=S, Se, and Te, respectively. The small difference with the predicted Lande factor g of 10/7 for the Gamma(7) (J=5/2) ground state was attributed to crystal-field admixture. In addition, EPR lines from Ce(3+) ions located at sites with small distortion from the original octahedral symmetry were also observed. Two distinct sites with axial distortion along the < 001 > crystallographic direction were identified and a third signal in the spectrum was attributed to sites with the cubic symmetry distorted along the < 110 > direction. The distortion at these distinct Ce sites is attributed to Pb lattice vacancies near the cerium ions that compensate for its donor activity.
Resumo:
We have investigated the electronic and transport properties of zigzag Ni-adsorbed graphene nanoribbons (Ni/GNRs) using ab initio calculations. We find that the Ni adatoms lying along the edge of zigzag GNRs represent the energetically most stable configuration, with an energy difference of approximately 0.3 eV when compared to the adsorption in the middle of the ribbon. The carbon atoms at the ribbon edges still present nonzero magnetic moments as in the pristine GNR even though there is a quenching by a factor of almost five in the value of the local magnetic moments at the C atoms bonded to the Ni. This quenching decays relatively fast and at approximately 9 A from the Ni adsorption site the magnetic moments have already values close to the pristine ribbon. At the opposite edge and at the central carbon atoms the changes in the magnetic moments are negligible. The energetic preference for the antiparallel alignment between the magnetization at the opposite edges of the ribbon is still maintained upon Ni adsorption. We find many Ni d-related states within an energy window of 1 eV above and below the Fermi energy, which gives rise to a spin-dependent charge transport. These results suggest the possibility of manufacturing spin devices based on GNRs doped with Ni atoms.
Resumo:
Energy gaps are crucial aspects of the electronic structure of finite and extended systems. Whereas much is known about how to define and calculate charge gaps in density-functional theory (DFT), and about the relation between these gaps and derivative discontinuities of the exchange-correlation functional, much less is known about spin gaps. In this paper we give density-functional definitions of spin-conserving gaps, spin-flip gaps and the spin stiffness in terms of many-body energies and in terms of single-particle (Kohn-Sham) energies. Our definitions are as analogous as possible to those commonly made in the charge case, but important differences between spin and charge gaps emerge already on the single-particle level because unlike the fundamental charge gap spin gaps involve excited-state energies. Kohn-Sham and many-body spin gaps are predicted to differ, and the difference is related to derivative discontinuities that are similar to, but distinct from, those usually considered in the case of charge gaps. Both ensemble DFT and time-dependent DFT (TDDFT) can be used to calculate these spin discontinuities from a suitable functional. We illustrate our findings by evaluating our definitions for the Lithium atom, for which we calculate spin gaps and spin discontinuities by making use of near-exact Kohn-Sham eigenvalues and, independently, from the single-pole approximation to TDDFT. The many-body corrections to the Kohn-Sham spin gaps are found to be negative, i.e., single-particle calculations tend to overestimate spin gaps while they underestimate charge gaps.
Resumo:
Background: DAPfinder and DAPview are novel BRB-ArrayTools plug-ins to construct gene coexpression networks and identify significant differences in pairwise gene-gene coexpression between two phenotypes. Results: Each significant difference in gene-gene association represents a Differentially Associated Pair (DAP). Our tools include several choices of filtering methods, gene-gene association metrics, statistical testing methods and multiple comparison adjustments. Network results are easily displayed in Cytoscape. Analyses of glioma experiments and microarray simulations demonstrate the utility of these tools. Conclusions: DAPfinder is a new friendly-user tool for reconstruction and comparison of biological networks.
Resumo:
In this work we present a complete characterization and magnetic study of vanadium oxide/hexadecylamine nanotubes (VO(x)/Hexa NT's) doped with Co(2)+ and Ni(2+) ions. The morphology of the NT's has been characterized by transmission electron microscopy, while the metallic elements have been quantified by the instrumental neutron activation analysis technique. The static and dynamic magnetic properties were studied by collecting data of magnetization as a function of magnetic field and temperature and by electron paramagnetic resonance. At difference of the majority reports in the literature, we do not observe magnetic dimers in vanadium oxide nanotubes. Also, we observed that the incorporation of metallic ions (Co(2+), S = 3/2 and Ni(2+), S = 1) decreases notably the amount of V(4+) ions in the system, from 14-16% (nondoped case) to 2%-4%, with respect to the total vanadium atoms (fact corroborated by XPS experiments) anyway preserving the tubular nanostructure. The method to decrease the amount of V(4+) in the nanotubes improves considerably their potential technological applications as Li-ion batteries cathodes. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3580252]
Resumo:
Objective: The purpose of this study was to evaluate in vitro the Knoop microhardness (Knoop hardness number [KHN]) and the degree of conversion using FT-Raman spectroscopy of a light-cured microhybrid resin composite (Z350-3M-ESPE) Vita shade A3 photopolymerized with a halogen lamp or an argon ion laser. Background Data: Optimal polymerization of resin-based dental materials is important for longevity of restorations in dentistry. Materials and Methods: Thirty specimens were prepared and inserted into a disc-shaped polytetrafluoroethylene mold that was 2.0 mm thick and 3 mm in diameter. The specimens were divided into three groups (n = 10 each). Group 1 (G1) was light-cured for 20 sec with an Optilux 501 halogen light with an intensity of 1000 mW/cm(2). Group 2 (G2) was photopolymerized with an argon laser with a power of 150 mW for 10 sec, and group 3 (G3) was photopolymerized with an argon laser at 200 mW of power for 10 sec. All specimens were stored in distilled water for 24 h at 37 degrees C and kept in lightproof containers. For the KHN test five indentations were made and a depth of 100 mu m was maintained in each specimen. One hundred and fifty readings were obtained using a 25-g load for 45 sec. The degree of conversion values were measured by Raman spectroscopy. KHN and degree of conversion values were obtained on opposite sides of the irradiated surface. KHN and degree of conversion data were analyzed by one-way ANOVA and Tukey tests with statistical significance set at p < 0.05. Results: The results of KHN testing were G1 = 37.428 +/- 4.765; G2 = 23.588 +/- 6.269; and G3 = 21.652 +/- 4.393. The calculated degrees of conversion (DC%) were G1 = 48.57 +/- 2.11; G2 = 43.71 +/- 3.93; and G3 = 44.19 +/- 2.71. Conclusions: Polymerization with the halogen lamp ( G1) attained higher microhardness values than polymerization with the argon laser at power levels of 150 and 200 mW; there was no difference in hardness between the two argon laser groups. The results showed no statistically significant different degrees of conversion for the polymerization of composite samples with the two light sources tested.
Resumo:
The aim of this Study was to compare the learning process of a highly complex ballet skill following demonstrations of point light and video models 16 participants divided into point light and video groups (ns = 8) performed 160 trials of a pirouette equally distributed in blocks of 20 trials alternating periods of demonstration and practice with a retention test a day later Measures of head and trunk oscillation coordination d1 parity from the model and movement time difference showed similarities between video and point light groups ballet experts evaluations indicated superiority of performance in the video over the point light group Results are discussed in terms of the task requirements of dissociation between head and trunk rotations focusing on the hypothesis of sufficiency and higher relevance of information contained in biological motion models applied to learning of complex motor skills
Resumo:
The biogeochemical processes affecting the transport and cycling of terrestrial organic carbon in coastal and transition areas are still not fully understood One means of distinguishing between the sources of organic materials contributing to particulate organic matter (POM) in Babitonga Bay waters and sediments is by the direct measurement of delta(13)C of dissolved inorganic carbon (DIC) and delta(13)C and delta(15)N in the organic constituents. An isotopic survey was taken from samples collected in the Bay in late spring of 2004. The results indicate that the delta(13)C and delta(15)N compositions of OM varied from -21.7 parts per thousand to -26 2 parts per thousand. and from + 9 2 parts per thousand. to -0 1 parts per thousand, respectively. delta(13)C from DIC ranges from +0.04 parts per thousand to -12.7 parts per thousand The difference in the isotope compositions enables the determination of three distinct end-members terrestrial, marine and urban Moreover, the evaluation of source contribution to the particulate organic matter (POM) in the Bay, enables assessment of the anthropogenic impact. Comparing the depleted values of delta(13)C(DIC) and delta(13)C(POC) it is possible to further understand the carbon dynamic within Babitonga Bay (C) 2010 Elsevier BV All rights reserved
Resumo:
Estimates of greenhouse-gas emissions from deforestation are highly uncertain because of high variability in key parameters and because of the limited number of studies providing field measurements of these parameters. One such parameter is burning efficiency, which determines how much of the original forest`s aboveground carbon stock will be released in the burn, as well as how much will later be released by decay and how much will remain as charcoal. In this paper we examined the fate of biomass from a semideciduous tropical forest in the ""arc of deforestation,"" where clearing activity is concentrated along the southern edge of the Amazon forest. We estimated carbon content, charcoal formation and burning efficiency by direct measurements (cutting and weighing) and by line-intersect sampling (LIS) done along the axis of each plot before and after burning of felled vegetation. The total aboveground dry biomass found here (219.3 Mg ha(-1)) is lower than the values found in studies that have been done in other parts of the Amazon region. Values for burning efficiency (65%) and charcoal formation (6.0%, or 5.98 Mg C ha(-1)) were much higher than those found in past studies in tropical areas. The percentage of trunk biomass lost in burning (49%) was substantially higher than has been found in previous studies. This difference may be explained by the concentration of more stems in the smaller diameter classes and the low humidity of the fuel (the dry season was unusually long in 2007, the year of the burn). This study provides the first measurements of forest burning parameters for a group of forest types that is now undergoing rapid deforestation. The burning parameters estimated here indicate substantially higher burning efficiency than has been found in other Amazonian forest types. Quantification of burning efficiency is critical to estimates of trace-gas emissions from deforestation. (C) 2009 Elsevier B.V. All rights reserved.