942 resultados para Mixed Ligand Transition Metal Chelates


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the present investigation some spectroscopic properties of several lanthanide squarate hydrates are reported. The Raman spectra show the same distinctive Jahn-Teller intensity pattern for non-totally symmetric modes, as previously observed for the free anion. In the case of the terbium salt, the Tb3+ emission is very intense even at room temperature, revealing an efficient excitation via the ligand electronic levels. The Tb3+ dilution in Gd3+ or La3+ hosts increases this excitation efficiency without any appreciable variation in the 5D4 excited-state lifetime. However, the Eu3+ emission is very weak, with excited states located above the 5D2 level (ca. 21 550 cm-1) being completely quenched at room temperature. At lower temperatures higher-lying levels are not so efficiently quenched. The broad band observed in the UV excitation spectra of Eu3+ and Tb3+ is easily assigned to an intra-ligand transition leading to ligand-to-lanthanide ion energy transfer processes. As observed for Tb3+, Eu3+ dilution in Gd3+ or La3+ hosts also increases the relative emission intensity mediated by the ligand, without variation in the 5D0 excited-state lifetime. The Eu3+ 5D0 excitation spectra show vibronic structures that can be interpreted on the basis of the data available from the vibrational spectra. An increase in the vibronic intensities is observed as the lanthanide concentration is increased. © 1994.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

2-Mercaptobenzothiazole loaded on previously polystyrene treated clay was prepared, characterized and used for sorption and preconcentration of Hg(II) Pb(II), Zn(II) and Cd(II) from an aqueous solution. The support used was a natural clay previously treated with sulphuric acid solution. Adsorptiou isotherms of metal ions from aqueous solutions as function of pH were studied at 298 K. Conditions for quantitative retention and elution were established for each metal by batch and column methods. The chemically treated clay was very selective to Hg(II) in solution in which Zn(II), Cd(II), Pb(II) and some transition metal ions were also present.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chemically bonded phases were obtained by reaction of 2-, 3-, and 4-aminobenzoate with 3-chloropropyl-silica gel. These phases were employed for metal cation adsorption in a batch method and applied to the separation of transition metal cations by chromatographic analysis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The microstructural evolution, grain growth and densification for the varistor systems ZnO-Bi2O3 (ZB), ZnO-Bi2O3-Sb2O3 (ZBS), ZnO-Bi2O3-Sb2O3-MnO-Cr 2O3-CoO (ZBSCCM) were studied using constant heating rate sintering, scanning electron microscopy (SEM) and in situ phase formation measurement by high temperature X-ray diffraction (HT-XRD). The results showed that the densifying process is controlled by the formation and decomposition of the Zn2Bi3Sb3O14 pyrochlore (PY) phase for the ZBS and ZBSCCM systems. The addition of transition metals (ZBSCCM system) alters the formation and decomposition reaction temperatures of the pyrochlore phase and the morphology of the Zn7Sb2O12 spinel phase. Thus, the spinel grains act as inclusions and decrease the ZnO grain growth rate. Spinel grain growth kinetics in the ZBSCCM system showed an n value of 2.6, and SEM and HT-XRD results indicate two grain growth mechanisms based on coalescence and Ostwald ripening. © 1996 Chapman & Hall.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Several freshwater phytoplanktonic species (eukaryotic and prokaryotic) were grown in batch cultures up to stationary phase and quantified by chlorophyll a analysis. The complexation properties (conditional stability constant and total ligand concentration) of their exudates were investigated by complexometric titrations of the culture media using either copper or lead ion-selective electrodes. For most algae, Scatchard plot analysis of the titration data revealed two classes of copper-complexing ligands, one weaker and the other stronger. Strong copper-complexing agents were produced by Cyanophyta mainly in stationary growth phase. During exponential phase, ligand concentrations and the affinity for copper were similar for both Chlorophyta and Cyanophyta. Complexation parameters for Chlorophyta exudates were similar for both growth phases: exponential and stationary. In contrast, ligand concentrations were similar for Cyanophyta, but the conditional stability constants (the strength of association between ligand and metal) were different. Weak lead-complexing ligands were produced exclusively by two Chlorophyta.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present paper describes the one-pot procedure for the formation of self-assembled thin films of two silanes on the model oxidized silicon wafer, SiO2/Si. SiO2/Si is a model system for other surfaces, such as glass, quartz, aerosol, and silica gel. MALDI-TOF MS with and without a matrix, XPS, and AFM have confirmed the formation of self-assembled thin films of both 3-imidazolylpropyltrimethoxysilane (3-IPTS) and 4-(N- propyltriethoxysilane-imino)pyridine (4-PTSIP) on the SiO2/Si surface after 30 min. Longer adsorption times lead to the deposition of nonreacted 3-IPTS precursors and the formation of agglomerates on the 3-IPTS monolayer. The formation of 4-PTSIP self-assembled layers on SiO2/Si is also demonstrated. The present results for the flat SiO2/Si surface can lead to a better understanding of the formation of a stationary phase for affinity chromatography as well as transition-metal-supported catalysts on silica and their relationship with surface roughness and ordering. The 3-IPTS and 4-PTSIP modified SiO2/Si wafers can also be envisaged as possible built-on-silicon thin-layer chromatography (TLC) extraction devices for metal determination or N-heterocycle analytes, such as histidine and histamine, with on-spot MALDI-TOF MS detection. © 2005 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Five new lanthanide(III) complexes of hydrocinnamic acid (Hcin), [Ln(cin)3(H2O)3]·3Hcin (Ln = Tb(III) (1), Dy(III) (2), Er(III) (3), Eu(III) (4) and Gd(III) (5)) have been synthesized and characterized. The X-ray structures of 1-5 reveal that all compounds are isostructural and that each lanthanide ion is nine-coordinated by oxygen atoms in an overall distorted tricapped trigonal-prismatic geometry. Six oxygen atoms are provided by carboxylate moieties, and the other three by water molecules. The supramolecular architectures of 1-5 show the presence of uncoordinated hydrocinnamic acid molecules which induce the formation of numerous hydrogen bonds. The photophysical properties of these complexes in the solid state at room temperature were studied using diffuse reflectance (DR), fluorescence excitation and emission spectra. An energy level diagram was used to establish the most relevant channels involved in the ligand-to-metal energy transfer, indicating that cin- ligands can act as intramolecular energy donors for Tb(III), Dy(III) and Eu(III) ions. © 2012 Elsevier B.V.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The new europium binuclear complex [Eu2(dcpz) 2(suc)(H2O)8]·(H2O) 1.5 (dcpz = 3,5-dicarboxypyrazolate and suc = succinate) has been synthesized and structurally characterized by single crystal X-ray diffraction methods. The binuclear complex crystallizes in the triclinic space group P1̄ and consists of two lanthanide ions linked by two different bridging organic ligands. 3D supramolecular framework is constructed by hydrogen bonds. The compound shows strong red emission under UV excitation at room temperature associated to IL transitions indicating a ligand to metal energy transfer mechanism since the triplet energy level lies higher than that of europium 5D0 level. Magnetic susceptibility studies showed weak temperature dependence characteristic of the Van Vleck paramagnetism. © 2013 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The understanding and control of ferromagnetism in diluted magnetic semiconducting oxides (DMO) is a special challenge in solid-state physics and materials science due to its impact in magneto-optical devices and spintronics. Several studies and mechanisms have been proposed to explain intrinsic ferromagnetism in DMO compounds since the theoretical prediction of room-temperature ferromagnetism. However, genuine and intrinsic ferromagnetism in 3d-transition metal-doped n-type ZnO semiconductors is still a controversial issue. Furthermore, for DMO nanoparticles, some special physical and chemical effects may also play a role. In this contribution, structural and magnetic properties of sonochemically prepared cobalt-doped ZnO nanoparticles were investigated. A set of ZnO samples was prepared varying cobalt molar concentration and time of ultrasonic exposure. The obtained results showed that single phase samples can be obtained by the sonochemical method. However, cobalt nanoclusters can be detected depending on synthesis conditions. Magnetic measurements indicated a possible ferromagnetic response, associated to defects and cobalt substitutions at the zinc site by cobalt. However, ferromagnetism is depleted at higher magnetic fields. Also, an antiferromagnetic response is detected due to cobalt oxide cluster at high cobalt molar concentrations. © 2012 Springer Science+Business Media, LLC.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of this research was the preparation of a silica gel functionalized successively with 3-chloropropyltrimethoxysilane (SG-PrCl) and thiourea (SG-Pr-THIO), and its application in adsorption and catalysis. The materials were characterized by 13C and 29Si NMR, FTIR, scanning electron micrographs (SEM), analysis of nitrogen and elemental analysis. Aiming at its application in adsorption, the [3-(thiourea)-propyl] silica gel (SG-Pr-THIO) was tested as an adsorbent for transition-metal ions using a batchwise process. The organofunctionalized surface showed the ability to adsorb the metal ions Cd(ii), Cu(ii), Ni(ii), Pb(ii) and Co(ii) from water, ethanol and acetone. The adsorption isotherms were fitted by Langmuir, Freundlich, Temkin and Dubinin-Radushkevich (D-R) models. The kinetics of adsorption of metals were performed using three models such as pseudo-first order, pseudo-second order and Elovich. The Langmuir and pseudo-first order models were the most appropriate to describe the adsorption and kinetic data, respectively. With the purpose of application in catalysis, the SG-Pr-THIO was reacted with a Mo(ii) organometallic complex, forming the new material SG-Pr-THIO-Mo. Only a few works in the literature have reported this type of reaction, and none dealt with thiourea and Mo(ii) complexes. The new Mo-silica gel organometallic material was tested as catalyst in the epoxidation of cyclooctene and styrene. © 2013 The Royal Society of Chemistry and the Centre National de la Recherche Scientifique.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lanthanide compounds of general formula [Ln2(2,5-tdc) 3(dmf)2(H2O)2] ·2dmf·H2O (Ln = Eu(III) (1), Tb(III) (2), Gd(III) (3) and Dy(III) (4), dmf = N,N′-dimethylformamide and 2,5-tdc2- = 2,5-thiophedicarboxylate anion) were synthesized and characterized by elemental analysis, X-ray powder diffraction patterns, thermogravimetric analysis and infrared spectroscopy. Phosphorescence data of Gd(III) complex showed that the triplet states (T1) of 2,5-tdc2- ligand have higher energy than the main emitting states of Eu(III), Tb(III) and Dy(III), indicating that 2,5-tdc2- ligand can act as intramolecular energy donor for these metal ions. An energy level diagram was used to establish the most relevant channels involved in the ligand-to-metal energy transfer. The high value of experimental intensity parameter Ω2 for the Eu(III) complex indicate that the europium ion is in a highly polarizable chemical environment. The emission quantum efficiency (η) of the 5D0 emitting level of Eu(III) was also determined. The complexes act as possible light conversion molecular devices (LCMDs). © 2013 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The need for renewal and a more efficient use of energy resources has provided an increased interest in studies of methane activation processes in the gas phase by transition metal oxides. In this respect, the present work is an effort to assess , by means of a computational standpoint, the reactivity of NbOm n+ and FeOm n+ (m = 1, 2, n = 0, 1, 2) oxides in the activation process of the methane C-H bond, which corresponds to the first rate limiting step in the process of converting methane to methanol. These oxides are chosen, primarily, because the iron oxides are the most experimentally studied, and iron ions are more abundant in biological mediums. The main motive for choosing niobium oxides is the abundance of natural reserves of this mineral in Brazil (98%), especially in Minas Gerais. Initially, a thorough investigation was conducted, using different theoretical methods, to analyze the structural and electronic properties of the investigated oxides. Based on these results, the most reliable methodology was selected to investigate the activation process of the methane C-H bond by the series of iron and niobium oxides, considering all possible reaction mechanisms known to activate the C-H bond of alkanes. It is worth noting that, up to this moment and to our knowledge, there are no papers, in literature , investigating and comparing all the mechanisms considered in this work. I n general, the main results obtained show different catalytic tendencies and behaviors throughout the series of monoxides and dioxides of iron and niobium. An important and common result found in the two studies is that the increase in the load on the metal center and the addition of oxygen atoms to the metal, clearly favor the initial thermodynamics of the reaction, i.e., favor the approach of the metal center to methane, distorting its electron cloud and, thereby, decreasing its inertia. Comparing the two sets of oxides, we conclude that the iron oxides are the most efficient in activating the methane C-H bond. Among the iron oxides investigated, FeO + showed better kinetic and thermodynamic performance in the reaction with methane, while from the niobium oxides and ions NbO 2+ and NbO2 2+, showed better catalytic efficiency in the activation of the methane C-H bond.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)