978 resultados para Metabolic activity inhibition


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The disruption of glycogen synthase kinase 3-beta (GSK3B) homeostasis has implications in the pathophysiology of neuropsychiatric disorders, namely Alzheimer`s disease (AD). GSK3B activity is increased within the AD brain, favoring the hyperphosphorylation of microtubule-associated protein Tau and the formation of neurofibrillary tangles. Such abnormality has also been detected in leukocytes of patients with cognitive disorders. The aim of the present study was to determine the expression of total and phosphorylated GSK3B at protein level in platelets of older adults with varying degrees of cognitive impairment, and to compare GSK3B activity in patients with AD, mild cognitive impairment (MCI) and healthy controls. Sixty-nine older adults were included (24 patients with mild to moderate AD, 22 patients with amnestic MCI and 23 elderly controls). The expression of platelet GSK3B (total- and Ser-9 phosphorylated GSK3B) was determined by Western blot. GSK3B activity was indirectly assessed by means of the proportion between phospho-GSK3B to total GSK3B (GSK3B ratio), the former representing the inactive form of the enzyme. Ser-9 phosphorylated GSK3B was significantly reduced in patients with MCI and AD as compared to controls (p = 0.04). Platelet GSK3B ratio was significantly decreased in patients with MCI and AD (p = 0.04), and positively correlated with scores on memory tests (r = 0.298, p = 0.01). In conclusion, we corroborate previous evidence of increased GSK activity in peripheral tissues of patients with MCI and AD, and further propose that platelet GSK may be an alternative peripheral biomarker of this abnormality, provided samples are adequately handled in order to preclude platelet activation. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Crajoinas RO, Lessa LMA, Carraro-Lacroix LR, Davel APC, Pacheco BPM, Rossoni LV, Malnic G, Girardi ACC. Posttranslational mechanisms associated with reduced NHE3 activity in adult vs. young prehypertensive SHR. Am J Physiol Renal Physiol 299:F872-F881, 2010. First published July 14, 2010; doi:10.1152/ajprenal.00654.2009.-Abnormalities in renal proximal tubular (PT) sodium transport play an important role in the pathophysiology of essential hypertension. The Na(+)/H(+) exchanger isoform 3 (NHE3) represents the major route for sodium entry across the apical membrane of renal PT cells. We therefore aimed to assess in vivo NHE3 transport activity and to define the molecular mechanisms underlying NHE3 regulation before and after development of hypertension in the spontaneously hypertensive rat (SHR). NHE3 function was measured as the rate of bicarbonate reabsorption by means of in vivo stationary microperfusion in PT from young prehypertensive SHR (Y-SHR; 5-wk-old), adult SHR (A-SHR; 14-wk-old), and age-matched Wistar Kyoto (WKY) rats. We found that NHE3-mediated PT bicarbonate reabsorption was reduced with age in the SHR (1.08 +/- 0.10 vs. 0.41 +/- 0.04 nmol/cm(2)xs), while it was increased in the transition from youth to adulthood in the WKY rat (0.59 +/- 0.05 vs. 1.26 +/- 0.11 nmol/cm(2)xs). Higher NHE3 activity in the Y-SHR compared with A-SHR was associated with a predominant microvilli confinement and a lower ratio of phosphorylated NHE3 at serine-552 to total NHE3 (P-NHE3/total). After development of hypertension, P-NHE3/total increased and NHE3 was retracted out of the microvillar microdomain along with the regulator dipeptidyl peptidase IV (DPPIV). Collectively, our data suggest that the PT is playing a role in adapting to the hypertension in the SHR. The molecular mechanisms of this adaptation possibly include an increase of P-NHE3/total and a redistribution of the NHE3-DPPIV complex from the body to the base of the PT microvilli, both predicted to decrease sodium reabsorption.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The microtubule-associated protein Tau promotes the assembly and stability of microtubules in neuronal cells. Six Tau isoforms are expressed in adult human brain. All six isoforms become abnormally hyperphosphorylated and form neurofibrillary tangles in Alzheimer disease (AD) brains. In AD, reduced activity of phospholipase A(2) (PLA(2)), specifically of calcium-dependent cytosolic PLA(2) (cPLA(2)) and calcium-independent intracellular PLA(2) (iPLA(2)), was reported in the cerebral cortex and hippocampus, which positively correlated with the density of neurofibrillary tangles. We previously demonstrated that treatment of cultured neurons with a dual cPLA(2) and iPLA(2) inhibitor, methyl arachidonyl fluorophosphonate (MAFP), decreased total Tau levels and increased Tau phosphorylation at Ser(214) site. The aim of this study was to conduct a preliminary investigation into the effects of in vivo infusion of MAFP into rat brain on PLA(2) activity and total Tau levels in the postmortem frontal cortex and dorsal hippocampus. PLA(2) activity was measured by radioenzymatic assay and Tau levels were determined by Western blotting using the anti-Tau 6 isoforms antibody. MAFP significantly inhibited PLA(2) activity in the frontal cortex and hippocampus. The reactivity to the antibody revealed three Tau protein bands with apparent molecular weight of close to 40, 43 and 46 kDa in both brain areas. MAFP decreased the 46 kDa band intensity in the frontal cortex, and the 43 and 46 kDa band intensities in the hippocampus. The results indicate that in vivo PLA(2) inhibition in rat brain decreases the levels of total (nonphosphorylated plus phosphorylated) Tau protein and corroborate our previous in vitro findings.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Study Objectives: Metabolic syndrome (MetSyn) increases overall cardiovascular risk. MetSyn is also strongly associated with obstructive sleep apnea (OSA), and these 2 conditions share similar comorbidities. Whether OSA increases cardiovascular risk in patients with the MetSyn has not been investigated. We examined how the presence of USA in patients with MetSyn affected hemodynamic and autonomic variables associated with poor cardiovascular outcome. Design: Prospective clinical study. Participants: We studied 36 patients with MetSyn (ATP-III) divided into 2 groups matched for age and sex: (1) MetSyn+OSA (n = 18) and (2) MetSyn-OSA (n = 18). Measurements: USA was defined by an apnea-hypopnea index (AHI) > 15 events/hour by polysomnography. We recorded muscle sympathetic nerve activity (MSNA - microneurography), heart rate (HR), and blood pressure (BP - Finapres). Baroreflex sensitivity (BRS) was analyzed by spontaneous BP and HR fluctuations. Results: MSNA (34 +/- 2 vs 28 +/- 1 bursts/min, P = 0.02) and mean BP (111 +/- 3 vs. 99 +/- 2 mm Hg, P = 0.003) were higher in patients with MetSyn+OSA versus patients with MetSyn-USA. Patients with MetSyn+OSA had lower spontaneous BRS for increases (7.6 +/- 0.6 vs 12.2 +/- 1.2 msec/mm Hg, P = 0.003) and decreases (7.2 +/- 0.6 vs 11.9 +/- 1.6 msec/mm Hg, P = 0.01) in BP. MSNA was correlated with AHI (r = 0.48; P = 0.009) and minimum nocturnal oxygen saturation (r = -0.38, P = 0.04). Conclusion: Patients with MetSyn and comorbid USA have higher BP, higher sympathetic drive, and diminished BRS, compared with patients with MetSyn without USA. These adverse cardiovascular and autonomic consequences of USA may be associated with poorer outcomes in these patients. Moreover, increased BP and sympathetic drive in patients with MetSyn+OSA may be linked, in part, to impairment of baroreflex gain.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Phosphodiesterase (PDE) inhibition reduces skeletal muscle atrophy, but the underlying molecular mechanism remains unclear. We used microdialysis to investigate the effects of different PDE inhibitors on interstitial tyrosine concentration as well as proteolytic activity and atrogenes expression in isolated rat muscle. Rolipram, a PDE-4-selective inhibitor, reduced the interstitial tyrosine concentration and rates of muscle protein degradation. The rolipram-induced muscle cAMP increase was accompanied by a decrease in ubiquitin proteasome system (UPS) activity and atrogin-1 mRNA, a ubiquitin-ligase involved in muscle atrophy. This effect was not associated with Akt phosphorylation but was partially blocked by a protein kinase A inhibitor. Fasting increased atrogin-1, MuRF-1 and LC3b expression, and these effects were markedly suppressed by rolipram. Our data suggest that activation of cAMP signaling by PDE-4 blockade leads to inhibition of UPS activity and atrogenes expression independently of Akt. These findings are important for identifying novel approaches to attenuate muscle atrophy. Muscle Nerve 44: 371-381, 2011

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pires-Oliveira M, Maragno AL, Parreiras-E-Silva LT, Chiavegatti T, Gomes MD, Godinho RO. Testosterone represses ubiquitin ligases atrogin-1 and Murf-1 expression in an androgen-sensitive rat skeletal muscle in vivo. J Appl Physiol 108: 266-273, 2010. First published November 19, 2009; doi:10.1152/japplphysiol.00490.2009.-Skeletal muscle atrophy induced by denervation and metabolic diseases has been associated with increased ubiquitin ligase expression. In the present study, we evaluate the influence of androgens on muscle ubiquitin ligases atrogin-1/MAFbx/FBXO32 and Murf-1/Trim63 expression and its correlation with maintenance of muscle mass by using the testosterone-dependent fast-twitch levator ani muscle (LA) from normal or castrated adult male Wistar rats. Gene expression was determined by qRT-PCR and/or immunoblotting. Castration induced progressive loss of LA mass (30% of control, 90 days) and an exponential decrease of LA cytoplasm-to-nucleus ratio (nuclear domain; 22% of control after 60 days). Testosterone deprivation induced a 31-fold increase in LA atrogin-1 mRNA and an 18-fold increase in Murf-1 mRNA detected after 2 and 7 days of castration, respectively. Acute (24 h) testosterone administration fully repressed atrogin-1 and Murf-1 mRNA expression to control levels. Atrogin-1 protein was also increased by castration up to 170% after 30 days. Testosterone administration for 7 days restored atrogin-1 protein to control levels. In addition to the well known stimulus of protein synthesis, our results show that testosterone maintains muscle mass by repressing ubiquitin ligases, indicating that inhibition of ubiquitin-proteasome catabolic system is critical for trophic action of androgens in skeletal muscle. Besides, since neither castration nor androgen treatment had any effect on weight or ubiquitin ligases mRNA levels of extensor digitorum longus muscle, a fast-twitch muscle with low androgen sensitivity, our study shows that perineal muscle LA is a suitable in vivo model to evaluate regulation of muscle proteolysis, closely resembling human muscle responsiveness to androgens.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Although it is well known that catecholamines inhibit skeletal muscle protein degradation, the molecular underlying mechanism remains unclear. This study was undertaken to investigate the role of beta(2)-adrenoceptors (AR) and cAMP in regulating the ubiquitin-proteasome system (UPS) in skeletal muscle. We report that increased levels of cAMP in isolated muscles, promoted by the cAMP phosphodiesterase inhibitor isobutyl methylxanthine was accompanied by decreased activity of the UPS, levels of ubiquitin-protein conjugates, and expression of atrogin-1, a key ubiquitin-protein ligase involved in muscle atrophy. In cultured myotubes, atrogin-1 induction after dexamethasone treatment was completely prevented by isobutyl methylxanthine. Furthermore, administration of clenbuterol, a selective beta(2)-agonist, to mice increased muscle cAMP levels and suppressed the fasting-induced expression of atrogin-1 and MuRF-1, atrogin-1 mRNA being much more responsive to clenbuterol. Moreover, clenbuterol increased the phosphorylation of muscle Akt and Foxo3a in fasted rats. Similar responses were observed in muscles exposed to dibutyryl-cAMP. The stimulatory effect of clenbuterol on cAMP and Akt was abolished in muscles from beta(2)-AR knockout mice. The suppressive effect of beta(2)-agonist on atrogin-1 was not mediated by PGC-1 alpha (peroxisome proliferator-activated receptor-gamma coactivator 1 alpha known to be induced by beta(2)-agonists and previously shown to inhibit atrogin-1 expression), because food-deprived PGC-1 alpha knockout mice were still sensitive to clenbuterol. These findings suggest that the cAMP increase induced by stimulation of beta(2)-AR in skeletal muscles from fasted mice is possibly the mechanism by which catecholamines suppress atrogin-1 and the UPS, this effect being mediated via phosphorylation of Akt and thus inactivation of Foxo3. (Endocrinology 150: 5395-5404, 2009)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study investigated the in vivo effects of the Bothrops Jararaca venom (BjV) on general metabolic profile and, specifically. oil muscle protein metabolism in rats. The crude venom (0.4 mg/kg body weight, IV) was infused in awake rats, and plasma activity of enzymes and metabolites levels were determined after 1, 2, 3, and 4 hours. BjV increased urea, lactate, and activities of creatine kinase. lactate dehydrogenase. and aspartate aminotransferase after 4 hours. The content of liver glycogen was reduced by BjV. Protein metabolism was evaluated by means of microdialysis technique and in isolated muscles. BjV induced increase in the muscle interstitial-arterial tyrosine concentration difference. indicating a high protein catabolism. The myotoxicity induced by this venom is associated with reduction of protein synthesis and increase in rates of overall proteolysis, which was accompanied by activation of lysosomal and ubiquitin-proteasome systems without changes in protein levels of cathepsins and ubiquitin-protein conjugates.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Although several stage-specific genes have been identified in Leishmania, the molecular mechanisms governing developmental gene regulation in this organism are still not well understood. We have previously reported an attenuation of virulence in Leishmania major and L braziliensis carrying extra-copies of the spliced leader RNA gene. Here, we surveyed the major differences in proteome and transcript expression profiles between the spliced leader RNA overexpressor and control lines using two-dimensional gel electrophoresis and differential display reverse transcription PCR, respectively. Thirty-nine genes related to stress response, cytoskeleton, proteolysis, cell cycle control and proliferation, energy generation, gene transcription, RNA processing and post-transcriptional regulation have abnormal patterns of expression in the spliced leader RNA overexpressor line. The evaluation of proteolytic pathways in the mutant revealed a selective increase of cysteine protease activity and an exacerbated ubiquitin-labeled protein population. Polysome profile analysis and measurement of cellular protein aggregates showed that protein translation in the spliced leader RNA overexpressor line is increased when compared to the control line. We found that L major promastigotes maintain homeostasis in culture when challenged with a metabolic imbalance generated by spliced leader RNA surplus through modulation of intracellular proteolysis. However, this might interfere with a fine-tuned gene expression control necessary for the amastigote multiplication in the mammalian host. (c) 2010 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Biochemical markers for remission on acromegaly activity are controversial. We studied a subset of treated acromegalic patients with discordant nadir GH levels after oral glucose tolerance test (oGTT) and IGF-I values to refine the current consensus on acromegaly remission. We also compared GH results by two GH immunoassays. From a cohort of 75 treated acromegalic patients, we studied 13 patients who presented an elevated IGF-I despite post-oGTT nadir GH of <= 1 mu g/l. The 12-h daytime GH profile (GH-12 h), nadir GH after oGTT, and basal IGF-I levels were studied in patients and controls. Bland-Altman method showed high concordance between GH assays. Acromegalic patients showed higher mean GH-12 h values (0.71+/-0.36 vs. 0.31+/-0.28 mu g/l; p<0.05) and nadir GH after oGTT (0.48+/-0.32 vs. 0.097+/-0.002 mu g/l; p<0.05) as compared to controls. Nadir GH correlated with mean GH-12 h (r=0.92, p<0.05). The mean GH-12 h value from upper 95% CI of controls (0.54 mu g/l) would correspond to a theoretical normal nadir GH of <= 0.27 mu g/l. Patients with GH nadir <= 0.3 mu g/l had IGF-I between 100-130% ULNR (percentage of upper limit of normal range) and mean GH-12 h of 0.35+/-0.15, and patients with GH nadir >0.3 and <= 1 mu g/l had IGF-I >130% ULNR and mean GH-12 h of 0.93+/-0.24 mu g/l. Our data integrate daytime GH secretion, nadir GH after oGTT, and plasma IGF-I concentrations showing a continuum of mild residual activity in a subgroup of treated acromegaly with nadir GH values <= 1 mu g/l. The degree of increased IGF-I levels and nadir GH after oGTT are correlated with the subtle abnormalities of daytime GH secretion.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Metabolic syndrome (MetS) denotes a clustering of risk factors that may affect nitric oxide (NO) bioavailability and predispose to cardiovascular diseases, which are delayed by exercise training. However, no previous study has examined how MetS affects markers of NO formation, and whether exercise training increases NO formation in MetS patients. Here, we tested these two hypotheses. We studied 48 sedentary individuals: 20 healthy controls and 28 MetS patients. Eighteen MetS patients were subjected to a 3-month exercise training (E+group), while the remaining 10 MetS patients remained sedentary (E-group). The plasma concentrations of nitrite, cGMP, and ADMA (asymmetrical dimethylarginine: an endogenous nitric oxide synthase inhibitor), and the whole blood nitrite concentrations were determined at baseline and after exercise training using an ozone-based chemiluminescence assay, and commercial enzyme immunoassays. Thiobarbituric acid reactive species (TBA-RS) were measured in the plasma to assess oxidative stress using a fluorometric method. We found that, compared with healthy subjects, patients with MetS have lower concentrations of markers of NO formation, including whole blood nitrite, plasma nitrite, and plasma cGMP, and increased oxidative stress (all P < 0.05). Exercise training increased the concentrations of whole blood nitrite and cGMP, and decreased both oxidative stress and the circulating concentrations of ADMA (both P < 0.05). These findings show clinical evidence for lower endogenous NO formation in patients with MetS, and for improvements in NO formation associated with exercise training in MetS patients. (C) 2008 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Altered activity of matrix metalloproteinases (MMPs) is implicated in the vascular remodeling of hypertension. We examined whether increased MMP-2 expression/activity plays a role in the vascular remodeling and dysfunction found in the two-kidney, one-clip (2K-1C) hypertension. Sham operated or 2K-1C hypertension rats were treated with doxycycline 30 mg/(kg day) (or vehicle). Systolic blood pressure was monitored weekly. After 8 weeks of treatment, aortic rings were isolated to assess endothelium-dependent and independent relaxations. Quantitative morphometry of structural changes, collagen, and elastin contents in the aortic wall were studied in hematoxylin/eosin, Sirius Red, and Orceine stained aortic sections, respectively. Aortic MMP-2 levels were determined by gelatin zymography and aortic MMP-2 proteolytic activity was measured using DQ gelatin as the substrate after MMP-2 was captured by a specific antibody and immobilized on a microplate. Aortic MMP-2/tissue inhibitor of metalloprotemases (TIMP)-2 mRNA levels were determined by real time RT-PCR. Doxycycline attenuated 2K-1C hypertension (215 +/- 8 mmHg versus 167 +/- 13 mmHg in 2K-1C rats and 2K-1C + doxy rats, respectively; P < 0.01) and prevented the 35% reduction in endothelium-dependent vasorelaxation found in 2K-1C rats. Doxycycline prevented the increases in media thickness, and was associated with lower media/lumen and cross-sectional areas (all P<0.01). Doxycycline also prevented excessive collagen and elastin deposition in the vascular wall. Increased MMP-2 and Pro-MMP-2 levels and MMP-2 activity were found in the aortas of 2K-1C rats (all P<0.05). A 21-fold increase (P<0.001) in the ratio of MMP-2/TIMP-2 mRNA expression was found in the 2K-1C group, whereas this ratio remained unaltered in 2K-1C+doxy rats. Our results suggest that MMP-2 plays a role in 2K-1C hypertension and its structural and functional vascular changes, which were attenuated by doxycycline. (C) 2007 Elsevier Ireland Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Rationale: The reduction of neutrophil migration to the bacterial focus is associated with poor outcome in sepsis. Objectives: The objective of this study was to identify soluble substances in the blood of septic mice that inhibit neutrophil migration. Methods: A pool of serum obtained from mice 2 hours after the induction of severe sepsis by cecal ligation and puncture inhibited the neutrophil migration. The proteins with inhibitory activity on neutrophil migration were isolated by Blue-Sepharose chromatography, high-performance liquid chromatography, and electrophoresis, and identified by mass spectrometry. Measurements and Main Results: Hemopexin was identified as the serum component responsible for the inhibition of neutrophil migration. In sepsis, the pretreatment of wild-type mice with hemopexin inhibited neutrophil migration to the focus of infection and decreased the survival rate from 87.5 to 50.0%. Hemopexin-null mice subjected to severe sepsis presented normal neutrophil migration, low bacteremia, and an improvement of 40% in survival rate. Moreover, hemopexin inhibited the neutrophil chemotaxis response evoked by C5a or macrophage inflammatory protein-2 and induced a reduction of CXCR2 and L-selectin as well as the up-regulation of CD11b expression in neutrophil membranes. The inhibitory effect of hemopexin on neutrophil chemotaxis was prevented by serine protease inhibitors or ATP. In addition, serum levels of ATP were decreased 2 hours after severe sepsis. Conclusions: These data demonstrate for the first time the inhibitory role of hemopexin in neutrophil migration during sepsis and suggest that the therapeutic inhibition of hemopexin or its protease activity could improve neutrophil migration to the focus of infection and survival in sepsis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Rationale Sepsis is a leading cause of death in the intensive care unit, characterized by a systemic inflammatory response (SIRS) and bacterial infection, which can often induce multiorgan damage and failure. Leukocyte recruitment, required to limit bacterial spread, depends on phosphoinositide-3 kinase gamma (PI3K gamma) signaling in vitro; however, the role of this enzyme in polymicrobial sepsis has remained unclear. Objectives: This study aimed to determine the specific role of the kinase activity of PI3K gamma in the pathogenesis of sepsis and multiorgan damage. Methods. PI3K gamma wild-type, knockout, and kinase-dead mice were exposed to cecal ligation and perforation induced sepsis and assessed for survival; pulmonary, hepatic, and cardiovascular damage; coagulation derangements; systemic inflammation; bacterial spread; and neutrophil recruitment. Additionally, wild-type mice were treated either before or after the onset of sepsis with a PI3K gamma inhibitor and assessed for survival, neutrophil recruitment, and bacterial spread. Measurements and Main Results: Both genetic and pharmaceutical PI3K gamma kinase inhibition significantly improved survival, reduced multiorgan damage, and limited bacterial decompartmentalization, while modestly affecting SIRS. Protection resulted from both neutrophil-independent mechanisms, involving improved cardiovascular function, and neutrophil-dependent mechanisms, through reduced susceptibility to neutrophil migration failure during severe sepsis by maintaining neutrophil surface expression of the chemokine receptor, CXCR2. Furthermore, PI3K gamma pharmacological inhibition significantly decreased mortality and improved neutrophil migration and bacterial control, even when administered during established septic shock. Conclusions: This study establishes PI3K gamma as a key molecule in the pathogenesis of septic infection and the transition from SIRS to organ damage and identifies it as a novel possible therapeutic target.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The complexes trans-[Ru(NO)(NH(3))(4)L](X)(3) (X = BF(4)(-), PF(6)(-) or Cl(-) and L = N-heterocyclic ligands, P (OEt)(3), SO(3)(-2)), and [Ru(NO)Hedta)] were shown to exhibit IC(50pro) in the range of 36 (L = imN) to 5000 mu M (L = imC). The inhibitory effects of trans-[Ru(NO)(NH(3))(4)imN](BF(4))(3) and of the Angeli`s salt on the growth of the intramacrophage amastigote form studied were found to be similar while the trans-[Ru(NH(3))(4)imN(H(2)O)](2+) complex was found not to exhibit any substantial antiamastigote effect. The trans-[Ru(NO)(NH(3))(4)imN](BF(4))(3) compound, administered (500 nmol kg(-1) day(-1)) in BALB/c mice infected with Leishmania major, was found to exhibit a 98% inhibition on the parasite growth. Furthermore, this complex proved to be at least 66 times more efficient than glucantime in in vivo experiments. (C) 2010 Elsevier Masson SAS. All rights reserved.