993 resultados para Martí i Pol, Miquel,1929-2003 -- Epistolaris
Resumo:
Existen tres ámbitos principales en el estudio de necesidades orientadoras del alumnado de la Educación Secundaria Obligatoria que se refieren al Desarrollo académico, al de carácter Personal y Social y al relativo a la Carrera Profesional. En el área del Desarrollo Académico es donde se incardinan los saberes y conocimientos a adquirir por los escolares, las actitudes hacia un aprendizaje eficiente en los Centros educativos y las habilidades de estudio eficaz, objeto este último de nuestro trabajo. La investigación se efectuó sobre una muestra de 80 escolares comprendidos entre 12-16 años, en un Instituto de Educación Secundaria de la comarca de Santiago de Compostela (España). Realizado el análisis de la información obtenida son diversas las motivaciones que justifican la necesidad de mejorar las habilidades para aprender y estudiar que utilizan los alumnos. Existen argumentos normativos, necesidades expuestas por los alumnos y por los profesores, especialmente tutores, de naturaleza científica (conexión con el rendimiento académico) y de desenvolver nuevas estrategias teniendo en cuenta las aportaciones de la investigación psicopedagógica en este campo. En este sentido puede ser de interés la aplicación de un programa innovador de habilidades y estrategias de estudio contemplado en la comunicación.
Resumo:
There are three main study areas of guidance needs for pupils in Compulsory Secondary Education (CSE) which are academic development, personal and social development and the area of professional career. The area of academic development is where the knowledge to be acquired by the pupils, attitudes towards efficient learning in schools and the skills of efficient study are inculcated, the latter being the objective of our study. The research was taken from a sample of 80 school children between twelve and sixteen years old in a Secondary School in Santiago of Compostela ( Spain ). After analysing the results obtained we can see several motivations that justify the need to improve learning and study skills used by pupils. Normative arguments exist, needs that are exhibited by pupils and by teachers, especially tutors, of a scientific nature (connection with academic work) and to develop new strategies taking into account the contributions to the pedagogic research in this field. In this sense the application of an innovative programme of skills and study strategies in communication could be of interest.
Resumo:
The last interglacial period (about 125,000 years ago) is thought to have been at least as warm as the present climate (Kukla et al., 2002, doi:10.1006/qres.2001.2316). Owing to changes in the Earth's orbit around the Sun, it is thought that insolation in the Northern Hemisphere varied more strongly than today on seasonal timescales (Berger, 1987, doi:10.1175/1520-0469(1978)035<2362:LTVODI>2.0.CO;2), which would have led to corresponding changes in the seasonal temperature cycle (Montoya et al., 2000, doi:10.1175/1520-0442(2000)013<1057:CSFKBW>2.0.CO;2). Here we present seasonally resolved proxy records using corals from the northernmost Red Sea, which record climate during the last interglacial period, the late Holocene epoch and the present. We find an increased seasonality in the temperature recorded in the last interglacial coral. Today, climate in the northern Red Sea is sensitive to the North Atlantic Oscillation (Felis et al., 2000 doi:10.1029/1999PA000477; Rimbu et al., 2001, doi:10.1029/2001GL013083), a climate oscillation that strongly influences winter temperatures and precipitation in the North Atlantic region. From our coral records and simulations with a coupled atmosphere-ocean circulation model, we conclude that a tendency towards the high-index state of the North Atlantic Oscillation during the last interglacial period, which is consistent with European proxy records (Zagwijn, 1996, doi:10.1016/0277-3791(96)00011-X; Aalbersberg and Litt, 1998, doi:10.1002/(SICI)1099-1417(1998090)13:5<367::AID-JQS400>3.0.CO;2-I; Klotz et al., 2003, doi:10.1016/S0921-8181(02)00222-9), contributed to the larger amplitude of the seasonal cycle in the Middle East.
Resumo:
A long-running interdisciplinary research project on the development of landscape, prehistoric habitation and the history of vegetation within a "siedlungskammer" (limited habitation areal from neolithic to modern times has been carried out in the NW German lowlands, The siedlungskammer Flögeln is situated between the rivers Weser and EIbe and comprises about 23.5 km^2. It is an isolated pleistocene area surrounded by bogs, the soils consisting mainly of poor sands. In this siedlungskammer large-seale archaeological excavations and mappings have been performed, parallel to pedological, historical and above all pollen analytical investigations. The aim of the project is to record the individual phases in time, to delimit the respective settlement areas and to reconstruct the conditions of life and economy for each time period. A dense network of 10 pollen diagrams has been constructed. Several of them derive from the marginal area and from the centre of the large raised bog north of the siedlungskammer. These diagrams reflect the history of vegetation and habitation of a large region; due to the large pollen source area the habitation phases in the diagrams are poorly defined. Even in the utmost marginal diagram of this woodless bog, a great village with adjoining fields, situated only 100 m away from it, is registered with only low values of anthropogenic indicators. In contrast to this, the numerous pollen diagrams from kettle-hole bogs inside the siedlungskammer yield an exact picture of the habitation of the siedlungskammer and their individual parts. Early traces of habitation can be identified in the pollen diagram soon after the elm decline (around 5190 BP). Some time later in the middle neolithic period there follows a marked habitation phase, which starts between 4500 and 4400 BP and reflects the immigration of the trichterbecher culture. It corresponds to the landnam phase of Iversen in Denmark and begins with a sharp decline of the pollen curves of lime and oak, followed by the increase of anthropogenic indicators pointing to arable and pastural farming. High values of wild grasses and Calluna witness extensive forest grazing. This middle to late neolithic habitation is also registered archaeologically by settlements and numerous graves. After low human activity during Bronze Age and Older Iron Age times the archaeological and pollen analytical records of Roman and Migration periods is again very strong. This is followed by a gap in habitation during the 6th and 7th centuries and afterwards in the western part of the siedlungskammer from about 700 AD until the 14th century by the activity of the medieval village of Dalem, that was also excavated and whose fields were recorded by phosphate mapping to a size of 117 hectares. This medieval settlement phase is marked by much cereal cultivation (mainly rye). The dense network of pollen diagrams offers an opportunity to register the dispersion of the anthropogenic indicators from the areas of settlement to different distances and thus to obtain quantitative clues for the assessment of these anthropogenic indicators in pollen diagrams. In fig. 4 the reflection of the neolithic culture in the kettle-hole bogs and the large raised bog is shown in 3 phases: a) pre landnam, b) TRB-landnam, c) post landnam. Among arboreal pollen the reaction of Quercus is sharp close to the settlement but is not found at more distant profiles, whilst in contrast to this Tilia shows a significant decline even far away from the settlements. The record of most anthropogenic indicators outside the habitation area is very low, in particular cereal pollen is poorly dispersed; much more certain as an indicator for habitation (also for arable farming!) is Plantago lanceolata. A strong increase of wild grasses (partly Calluna aswell) some distance from the habitation areas indicates far reaching forest grazing. Fig. 5 illustrates the reflection of the anthropogenie indicators from the medieval village Dalem. In this instance the field area could be mapped exactly using phosphate investigations, and it has been possible to indicate the precise distances of the profile sites from the medieval fields. Here also, there is a clear correlation between decreasing anthropogenic indicators and increasing distance. In a kettle-hole bog (FLH) a distance of 3000 m away this marked settlement phase is not registered. The contrast between the pollen diagrams SWK and FLH (fig. 2 + 3, enclosure), illustrates the strong differences between diagrams from kettlehole bogs close to and distant from the settlements, for the neolithic as well as for the medieval period. On the basis of the examples presented here, implications concerning the interpretation of pollen diagrams with respect to habitation phases are discussed.
Resumo:
Lobsigensee is a small kettle hole lake 15 km north-west of Bern on the Swiss Plateau, at an altitude of 514 m asl. Its surface is 2ha today, its maximum depth 2.7 m; it has no inlet and the overflow functions mainly during snow melting. The area was covered by Rhone ice during the Last Glaciation (map in Fig.2). Local geology, climate and vegetation are summarized in Figure 3A-C, the history of settlement in Figures 5-7. In order to reconstruct the vegetational and environmental history of the lake and its surroundings pollen analysis and other bio- and isotope stratigraphies were applied to twelve profiles cored across the basin with modified Livingstone corers (Fig.3 D). (1) The standard diagram: The central core LQ-90 is described as the standard pollen diagram (Chapter 3) with 10 local pollen assemblage zones of the Late-Glacial (local PAZ Ll to Ll0, from about 16'000(7) to 10'000 years BP) and 20 PAZ of the Holocene (local PAZ L11 to L30), see Figs. 8-10 and 20-24. Local PAZ L 1 to L3 are in the Late-Glacial clay and record the vegetational development after the ice retreat: L1 shows very low pollen concentration and high Pinus percentages due to long-distance transport and reworking; the latter mechanism is corroborated by the findings of thermophilous and pre-Quaternary taxa. Local PAZ L2 has a high di versi ty of non-arboreal pollen (NAP) and reflects the Late-Glacial steppe rich in heliophilous species. Local PAZ L3 is similar but additionally rich in Betula nana and Sal1x, thus reflecting a "shrub tundra". The PAZ L1 to L3 belong to the Oldest Dryas biozone. Local PAZ L4 to L 10 are found in the gyttja of the profundal or in the lake marl of the littoral and record the Late-Glacial forests. L4 is the shrub phase of reforestation with very high Junlperus and rapidly increasing Betula percentages. L5 is the PAZ with a first, L7 with a second dominance of tree-birches, separated by L6 showing a depression in the Betula curve. L4 to L7 can be assigned to the Balling biozone. Possible correlation of the Betula depression to the Older Dryas biozone is discussed. In local PAZ L8 Plnus immigrates and expands. L9 shows a facies difference in that Plnus dominates over Betula in littoral but not in profundal spectra. L8 and L9 belong to the Allerod biozone. In its youngest part the volcanic ash from Laach/Eifel is regularly found (11,000 BP). The local PAZ Ll0 corresponds to the Younger Dryas blozone. The merely slight increase of the NAP indicates that the pine forests of the lowland were not strongly affected by a cooler climate. In order to evaluate the significance of the littoral accumulation of coniferous pollen the littoral profile LQ-150 is compared to the profundal. Radiocarbon stratigraphies derived from different materials are presented in Figures 13 and 14 and in Tables 2 and 3. The hard-water errors in the gyttja samples and the carbonate samples are similar. The samples of terrestrial plant macrofossils are not affected by hard-water errors. Two plateaux of constant age appear in the age-depth relationship; their consequence for biostratigraphy as well as pollen concentration and influx diagrams are discussed. Radiocarbon ages of the Late-Glacial pollen zones are shown in Table 10. The Holocene vegetational history is recorded in the local PAZ L 11 to L30. After a Preboreal (PAZ L11) dominated by pine and birch the expansions of Corylus, Ulmus and Quercus are very rapid. Among these taxa Corylus dominates dur ing the Boreal (PAZ L 12 and L 1 3), whereas the components of the mixed oak forest dominate in the Older Atlantic (PAZ L14 to L16). In the Younger Atlantic (PAZ L 17 to L 19) Fagus and Alnus play an increasing, the mixed oak forest a decreasing role. During the period of local PAZ L19 Neolithic settlers lived on the shore of Lobsigensee. During the Subboreal (PAZ L20 and L21) and the Older Subatlantic (L22 to L25) strong fluctuations of Fagus and often antagonistic peaks of NAP, Alnus, Betula and Corylus can be interpreted as signs of human impact on vegetation. L23 is characterized not only by high values of NAP (especially apophytes and anthropochorous species) but also by the appearance of Juglans, Castanea and Secale which point to the Roman colonization of the area. For a certain period during the Younger Subatlantic (PAZ L26 to L30) the lake was used for retting hemp (Cannabis). Later the dominance of Quercus pollen indicates the importance of wood pastures. The youngest sediments reflect the wide-spread agricultural grass lands and the plantation of Pinus and Picea. Radiocarbon dates for the Holocene are given in Figure 23 and Table 4, the extrapolated ages of the Holocene pollen zones in Table 15. (2) The cross sections: Figures 25 and 26 give a summary of the litho- and palynostratigraphy of the two cross sections. Based on 11 Late-Glacial and 9 Holocene pollen diagrams (in addition to the standard ones), the consistency of the criteria for the definition of the pollen zones is examined in Tables 7 and 8 for the Late-Glacial and in Tables 11 to 14 for the Holocene. Sediment thicknesses across the basin for each pollen zone are presented in these tables as well as in Figures 43 to 45 for the Late-Glacial and in Figures 59 to 65 for the Holocene. Sediment focusing can explain differences between the gyttja cores of the profundal. Focusing is more than compensated for through "stretching" by carbonate precipitation on the littoral terrace. Pollen influx to the cross section are discussed (Chapters 4.1.5. and 4.2.3.). (3) The regional pollen zones: Based on some selected sites between Lake Geneva and Lake Constance regional pollen zones are proposed (Table 16, 17 and 19). (4) Paleoecology: Climatic change in the Late-Glacial can be inferred from Coleoptera, Trichoptera, Chironomidae and d18O of carbonates: a distinct warming is recorded around 12' 600 BP and around 10' 000 BP. The Younger Dryas biozone (10'700-10'000 BP) was the only cooling found in the Late-Glacial. The Betula depression often correlated wi th the Older Dryas biozone was possibl not colder but dryer than the previous period. During the Holocene the lowland site is not very sensitive to the minor climatic changes. Table 22 summarizes climatic and trophic changes before 8'000 BP as deduced from various biostratigraphies studied by a number of authors. Ostracods, Chironomids and fossil pigments indicate that anoxic conditions prevailed during the BoIling (possibly meromixis). Changes in the lake level are illustrated in Figure 74. A first lake-level lowering occurred in the early Holocene (10'000 to 9'000 BP), a second during the Atlantic (about 6'800 to 5'200 BP). The first "shrinking" of the lake volume resulted in a eutrophication recorded by laminations in the profundal and by pigments of Cyanophyceae. The second fall in water level corresponds to an increase of Nymphaeaceae. Human impact can be inferred in three ways: eutrophication of the lake (since the Neolithic), changes of terrestrial vegetation by deforestations (cyclicity of Fagus, see Figures 78 to 80), and enhanced erosion (increasing sedimentation rates by inwashed clay, particularly since the Roman Colonization, see Figures 49 and 81). Summary: This paper was planned as the final report on Lobsigensee. However, a number of issues are not answered but can only be asked more precisely, for example: (1) For the two periods with the highest rates of change, Le. the Bolling and the Preboreal biozones, pollen influx may reflect vegetation dynamics. Detailed investigations of these periods in annually laminated sediments are planned. (2) Biostratigraphies other than palynostratigraphy are needed to estimate the degree of linkage or independence in the development of terrestrial and lacustrine ecosystems. Often our sampling intervals were not identical, thus influencing our temporal resolution. (3) 6180- and 14C-stratigraPhies with high resolution will elucidate the leads and lags of these dynamic periods. Plateaux of constant age in the age-depth relationship have a strong bearing on both biological and geophysical understanding of Late-Glacial and early Holocene developments. (4) Numerical methods applied to the pollen diagrams of the cross section will help to quantify the significance of similari ties and dissimilarities across a single basin (with Prof. Birks). (5) Numerical methods applied to different sites on the Swiss Plateau and on the transect across the Alps will be helpful in evaluating the influence of different environmental factors (with Prof. Birks). (6) A new map 1: 1000 with 50cm-contour lines prov ided by Prof. Zurbuchen will be combined with a grid of cores sampling the transition from lake marl to peat enabling us to calculate paleo-volumes of the lake. This is interesting for the two "shrinking periods" (in Fig. 74A numbers 2-6 and 7-10), both accompanied by eutrophication. The pal eo-volume during the Neoli thic set tlement of the Cortaillod culture linked wi th an est l.mate of trophic change derived from diatoms (Prof. Smol in prep.) could possibly give an indication of the size of the human population of this period. (7) For the period with the antagonism between Fagus peaks and ABC-peaks close collaboration between palynologists, geochemists and archeologists should enable us to determine the influence of prehistoric and historic people on vegetation (collaboration with Prof. Stockli and Prof. Herzig). (8) The core LL-75 taken with a "cold letter box" will be analysed for major and trace elements by Dr. Sturm for 210pb and 137Cs by Prof.von Gunten and for pollen. We will see if our local PAZ L30 really corresponds to the surface sediment and if the small seepage lake reflects modern pollution.
Resumo:
A basaltic tephra layer consisting of brownish-olive glass shards. and about 0.2 mm thick. was found in cores from four lakes in northwest Germany. According to pollen analysis it was deposited during the early Boreal period (corresponding to about 8700 BP). The petrographic properties. the geochemical composition and the age agree with those of the Saksunarvatn tephra. which was first found on the Faroe Islands. The position of the tephra layer in the pollen stratigraphy and in the absolute time-scale is discussed. Procedures for locating the tephra in other cores are suggested.
Resumo:
Palynological investigations in northeastern Bavaria (Bavarian Vogtland, Fichtelgebirge, Steinwald) reveal the Late Glacial and Postglacial history of the regional vegetation. Radiocarbon data in comparison with those from the neighbouring regions (Rhön, Oberpfälzer Wald, Bavarian Forests) show a time lag in the development of the arboreal vegetation due to migration processes. The Fichtelgebirge is the southernmost part ofnortheastern Bavaria where the early Alleröd period (pollen zone IIa) is characterised by a dominance of birch forests. Hazel reached maximal values around 8000 BP in the area from the Fichtelgebirge to the Bavarian Forests, e.g. about 600 years earlier than in the more northern Rhön mountains. For spruce there is a considerable time lag between the Bavarian Forests and the Fichtelgebirge. Spruce spreading started in the Fichtelgebirge during the older part of the Atlantic period (pollen zone VI). At the same time, spruce already was the dominant tree in the Bavarian Forests. During the younger part of the Atlantic period (pollen zone VII) spruce and mixed oak forest tree species frequently occurred in the Fichtelgebirge. At the end of pollen zone VI, spruce came to dominance. At the same time, the immigration of beech started. During the Subboreal period (pollen zone VIII), spruce remained being a dominant member in the forests and at the end of pollen zone VIII, fir began to spread rapidly. During the first part of the Subatlantic period (pollen zone IX) spruce, beech, fir and pine formed the mountainous forests in the Fichtelgebirge. In the area of the Bavarian Vogtland, however, fir was a dominant forest tree during pollen zone IX, while spruce and beech played a less important role. During the 12th century, human colonisation started in the area of the Fichtelgebirge. This is 400 years later as in the area of the Rhön mountains. Indicators for earlier forest clearances are rare or absent.
Resumo:
Concentrations of sulfide, S°, and thiosulfate were determined in waters of the Baltic Sea. Microquantities of these compounds were observed in oxic waters. Concentration levels of reduced sulfur compounds in Baltic oxic waters were very close to levels of the Black Sea oxic zone. Thiosulfate and S° were predominate compounds in oxic water whereas sulfide was a predominant compound of Baltic waters high in hydrogen sulfide. Conclusion was made that during sedimentation in oxic waters anaerobic microorganisms along with aerobic bacteria take part in mineralization of organic matter. They exist on surfaces and in microniches of particles of organic detritus.
Resumo:
A palynological investigation of a Holocene profile from Lake Voulkaria, western Greece, was carried out as a contribution to the environmental history of the coastal area of northwestern Acarnania and the Classical city of Palairos. It shows that deciduous oaks dominated the natural vegetation of the area throughout the Holocene. Until ca. 7000 B.C. Pistacia occurred abundantly, while other evergreen woody taxa were rare. At ca. 6300 B.C. an expansion of Carpinus orientalis/Ostrya can be observed. Around ca. 5300 B.C. spreading of Erica indicates a change to a drier climate and/or first human impact. Since ca. 3500 B.C. an increase of evergreen shrubs now clearly indicates land-use. The foundation of the Classical city of Palairos led to a temporary expansion of Phillyrea maquis. Within this period, molluscs of brackish water indicate the use of the lake as a harbour after the construction of a connection to the sea. The deciduous Quercus woodland recovered when human impact decreased in the area, and lasted until modern times.
Resumo:
Los autores constan en final de cada parte