976 resultados para Marine technology
Resumo:
High levels of marine salt deposition present in coastal areas have a relevant effect on road runoff characteristics. This study assesses this effect with the purpose of identifying the relationships between monitored water quality parameters and intrinsic site variables. To achieve this objective, an extensive monitoring program was conducted on a Portuguese coastal highway. The study included 30 rainfall events, in different weather, traffic, and salt deposition conditions. The evaluations of various water quality parameters were carried out in over 200 samples. In addition, the meteorological, hydrological, and traffic parameters were continuously measured. The salt deposition rates were determined by means of a wet candle device, which is an innovative feature of the monitoring program. The relation between road runoff pollutants and independent variables associated with weather, traffic, and salt deposition conditions was assessed. Significant correlations among pollutants were observed. A high salinity concentration and its influence on the road runoff were confirmed. Furthermore, the concentrations of the most relevant pollutants seemed to be very dependent on some meteorological variables, particularly the duration of the antecedent dry period prior to each rainfall event and the average wind speed.
Resumo:
ABSTRACTIn the Amazon, river navigation is very important due to the length of navigable rivers and the lack of alternative road networks. Boats usually operate in unfavorable conditions, since there is no hydrodynamic relation among propellers, geometry, and the dimensions of the boat hull. Currently, there is no methodology for propeller hydrodynamic optimization with low computational cost and easy implementation in the region. The aim of this work was to develop a mathematical approach for marine propeller design applied to boats typically found on Amazon rivers. We developed an optimized formulation for the chord and pitch angle distributions, taking into account the classical model of Glauert. A theoretical analysis for the thrust and torque relationships on an annular control volume was performed. The mathematical model used was based on the Blade Element Momentum Theory (BEMT). We concluded that the new methodology proposed in this work demonstrates a good physical behavior when compared with the theory of Glauert and the experimental data of the Wageningen B3-50 propeller.
Resumo:
Tese de Doutoramento em Ciências da Educação (Especialidade de Tecnologia Educativa)
Resumo:
Dissertação de mestrado integrado em Engenharia Civil
Resumo:
Objective To determine whether the use of 3-dimensional (3D) imaging translates into a better surgical performance of naïve urologic laparoscopic surgeons during pyeloplasty (PY) and partial nephrectomy (PN) procedures. Materials and Methods Eighteen surgeons without any previous laparoscopic experience were randomly assigned to perform PY and PN in a porcine model using initially 2-dimensional (2D) and 3D laparoscopy. A surgical performance score was rated by an "expert" tutor through a modified 5-item global rating scale contemplating operative field view, bimanual dexterity, efficiency, tissue handling, and autonomy. Overall surgical time, complications, subjective perception of participating surgeons, and inconveniences related to the 3D vision were recorded. Results No difference in terms if operative time was found between 2D or 3D laparoscopy for both the PY (P =.51) and the PN (P =.28) procedures. A better rate in terms of surgical performance score was noted by the tutors when the study participants were using 3D vs 2D, for both PY (3.6 [0.8] vs 3.0 [0.4]; P =.034) and PN (3.6 [0.51] vs 3.15 [0.63]; P =.001). No complications occurred in any of the procedures. Most (77.2%) of the participating na??ve laparoscopic surgeons had the perception that 3D laparoscopy was overall easier than 2D. Headache (18.1%), nausea (18.1%), and visual disturbance (18.1%) were the most common issues reported by the surgeons during 3D procedures. Conclusion Despite the absence of translation in a shorter operative time, the use of 3D technology seems to facilitate the surgical performance of naive surgeons during laparoscopic kidney procedures on a porcine model.
Resumo:
Oceans are a vast source of natural substances. In them, we find various compounds with wide biotechnological and biomedical applicabilities. The exploitation of the sea as a renewable source of biocompounds can have a positive impact on the development of new systems and devices for biomedical applications. Marine polysaccharides are among the most abundant materials in the seas, which contributes to a decrease of the extraction costs, besides their solubility behavior in aqueous solvents and extraction media, and their interaction with other biocompounds. Polysaccharides such as alginate, carrageenan and fucoidan can be extracted from algae, whereas chitosan and hyaluronan can be obtained from animal sources. Most marine polysaccharides have important biological properties such as biocompatibility, biodegradability, and anti-inflammatory activity, as well as adhesive and antimicrobial actions. Moreover, they can be modified in order to allow processing them into various shapes and sizes and may exhibit response dependence to external stimuli, such as pH and temperature. Due to these properties, these biomaterials have been studied as raw material for the construction of carrier devices for drugs, including particles, capsules and hydrogels. The devices are designed to achieve a controlled release of therapeutic agents in an attempt to fight against serious diseases, and to be used in advanced therapies, such as gene delivery or regenerative medicine.
Resumo:
Publicado em "Journal of tissue engineering and regenerative medicine". Vol. 8, suppl. s1 (2014)
Resumo:
Despite the vast investigation and the large amount of products already available in the market to treat the different bone defects there is still a growing need to develop more advanced and complex therapeutic strategies. In this context, a mixture of Marine Hydroxyapatite-Fluorapatite:Collagen (HA-FP:ASC) seems to be a promising solution to overcome these bone defects, specifically, dental defects. HA-FP particles (20–63 μm) were obtained through pyrolysis (950°C, 12 h) of shark teeth (Isurus oxyrinchus, P. glauca), and Type I collagen was isolated from Prionace glauca skin as previously described (1). After the steps of purification, collagen was solubilized in 0.5 M acetic acid and HA-FP added producing three different formulations: were produced, 30:70, 50:50 and 70:30 of HA-FP:ASC, respectively. EDC/NHS and HMDI binding agents were used to stabilize the produced scaffolds. Mechanical properties were evaluated by compression tests. SEM analysis allowed observing the mineral deposition, after immersion in simulated body fluid and also permitted to evaluate how homogenous was the distribution of HA-FP in the different scaffold formulations, also confirmed by μ-CT assay. It was readily visible by Cytotoxicity and life/dead CLSM assays that cells were able to adhere and proliferate in the produced scaffolds. Scaffolds crosslinked with EDC/NHS showed lower cytotoxicity, being the ones chosen for further cellular evaluation.
Resumo:
This book was produced in the scope of a research project entitled “Navigating with ‘Magalhães’: Study on the Impact of Digital Media in Schoolchildren”. This study was conducted between May 2010 and May 2013 at the Communication and Society Research Centre, University of Minho, Portugal and it was funded by the Portuguese Foundation for Science and Technology (PTDC/CCI-COM/101381/2008).
Resumo:
(Excerto) In times past, learning to read, write and do arithmetic was to get on course to earn the “writ of emancipation” in society. These skills are still essential today, but are not enough to live in society. Reading and critically understanding the world we live in, with all its complexity, difficulties and challenges, require not only other skills (learning to search for and validate information, reading with new codes and grammar, etc) but, to a certain extent, also metaskills, matrixes and mechanisms that are transversal to the different and new literacies, are necessary. They are needed not just to interpret but equally to communicate and participate in the little worlds that make up our everyday activities as well as, in a broader sense, in the world of the polis, which today is a global world.
Resumo:
This book was produced in the scope of a research project entitled “Navigating with ‘Magalhães’: Study on the Impact of Digital Media in Schoolchildren”. This study was conducted between May 2010 and May 2013 at the Communication and Society Research Centre, University of Minho, Portugal and it was funded by the Portuguese Foundation for Science and Technology (PTDC/CCI-COM/101381/2008). As we shall explain in more detail later in this book, the main objective of that research project was to analyse the impact of the Portuguese government programme named ´e-escolinha´ launched in 2008 within the Technological Plan for Education. This Plan responds to the principles of the Lisbon Strategy signed in 2000 and rereleased in the Spring European Council of 2005.
Resumo:
Inspired by nature, in particular by the marine mussels adhesive proteins (MAPs) and by the tough brick-and-mortar nacre-like structure, novel multilayered films are prepared in the present work. Organic-inorganic multilayered films, with an architecture similar to nacre based on bioactive glass nanoparticles (BG), chitosan and hyaluronic acid modified with catechol groups, which are the main responsible for the outstanding adhesion in MAPs, are developed for the first time. The biomimetic conjugate is prepared by carbodiimide chemistry and analyzed by ultraviolet-visible spectrophotometry. The build-up of the multilayered films is monitored with a quartz crystal microbalance with dissipation monitoring and their topography is characterized by atomic force microscopy. The mechanical properties reveal that the films containing catechol groups and BG present an enhanced adhesion. Moreover, the bioactivity of the films upon immersion in a simulated body fluid solution for 7 days is evaluated by scanning electron microscopy coupled with energy dispersive X-ray spectroscopy, Fourier transform infrared spectroscopy and X-ray diffraction. It was found that the constructed films promote the formation of bone-like apatite in vitro. Such multifunctional mussel inspired LbL films, which combine enhanced adhesion and bioactivity, could be potentially used as coatings of a variety of implants for orthopedic applications.
Resumo:
The development of products from marine bioresources is gaining importance in the biotechnology sector. The global market for Marine Biotechnology products and processes was, in 2010, estimated at 2.8 billion with a cumulative annual growth rate of 510% (Børresen et al., Marine biotechnology: a new vision and strategy for Europe. Marine Board Position Paper 15. Beernem: Marine Board-ESF, 2010). Marine Biotechnology has the potential to make significant contributions towards the sustainable supply of food and energy, the solution of climate change and environmental degradation issues, and the human health. Besides the creation of jobs and wealth, it will contribute to the development of a greener economy. Thus, huge expectations anticipate the global development of marine biotechnology. The marine environment represents more than 70% of the Earths surface and includes the largest ranges of temperature, light and pressure encountered by life. These diverse marine environments still remain largely unexplored, in comparison with terrestrial habitats. Notwithstanding, efforts are being done by the scientific community to widespread the knowledge on oceans microbial life. For example, the J. Craig Venter Institute, in collaboration with the University of California, San Diego (UCSD), and Scripps Institution of Oceanography have built a state-of-the-art computational resource along with software tools to catalogue and interpret microbial life in the worlds oceans. The potential application of the marine biotechnology in the bioenergy sector is wide and, certainly, will evolve far beyond the current interest in marine algae. This chapter revises the current knowledge on marine anaerobic bacteria and archaea with a role in bio-hydrogen production, syngas fermentation and bio-electrochemical processes, three examples of bioenergy production routes.
Resumo:
Dissertação de mestrado em Molecular Genetics
Resumo:
La diarrea neonatal representa uno de los problemas sanitarios de mayor relevancia en las primeras semanas de vida del cerdo. Provoca importantes pérdidas económicas por morbilidad y mortalidad. El cultivo de enterocitos primarios representa una herramienta valiosa para el estudio de patologías causadas por agentes infecciosos que afectan la integridad del epitelio intestinal. La producción de anticuerpos extraídos a partir de la yema de huevo de gallinas inmunizadas (IgY), es una tecnología innovadora, que ha mostrado ser protectiva contra diarreas causadas por agentes víricos y bacterianos. La nanotecnología permite mejorar la eficiencia en la administración de distintas drogas. Los nanotubos de carbono han ganado una enorme popularidad por sus propiedades y aplicaciones únicas. La investigación sobre los aspectos toxicológicos de estas nanopartículas es escasa. Una vez dentro de la célula, las nanopartículas pueden inducir estrés oxidativo intracelular por perturbar el equilibrio oxidativo. Las hipótesis de trabajo es: La administración de IgY anti-Escherichia coli a través de nanotubos protegerá in vitro e in vivo a los enterocitos de una infección por E. coli previniendo la diarrea neonatal porcina. Los objetivos del trabajo son: Evaluar la protección por un anticuerpo aviario IgY anti-E. coli aplicado mediante nanotubos de carbono a cultivo de enterocitos porcinos primarios sometidos a una post-infección con E. coli; Analizar los efectos secundarios de los nanotubos con IgY anti-E coli en la citotoxicidad, el balance oxidativo y la apoptosis de los enterocitos porcinos cultivados in vitro y Evaluar la acción terapeútica de la IgY anti-E coli aplicada a porcinos y efectos secundarios de la administración con nanotubos. Se implementará un diseño experimental in vitro con diferentes grupos de cultivos con nanotubos, con IgY anti-E. coli e inespecifica y con exposición a E. coli. Se realizará cultivo de enterocitos porcinos primarios con una técnica de disgregación enzimática con colagenasa según protocolo de Bader et al. (2000). Se evaluará la viabilidad por la prueba de azul tripan. Para la obtención del anticuerpo anti-E. coli aviario se aplicarán un total de 3 dosis de E. coli (109 UFC/ml de adyuvante) a gallinas Legorhn en condiciones fisiológicas. Se recolectarán los huevos diariamente. Se purificará la IgY según método de Polson et al. (1985) utilizando PEG 6000. La concentración de IgY se medirá por ELISA de alta sensibilidad. La IgY será incorporada a nanotubos según protocolo de Acevedo et al. 2006. Para analizar los posibles efectos secundarios de los nanotubos se evaluará: 1. Citotoxicidad por técnica de MTT 2. Estrés oxidativo por técnica de TBARS y 3. Apoptosis por técnica de TUNEL.Además, se implementará un diseño experimental in vivo para probar la acción terapeútica de este nutraceútico aplicados a lechones destetados y los efectos secundarios de la administración con nanotubos. Se realizará un cultivo de enterocitos de lechones que previamente fueron tratados con la IgY anti-E. coli administrada mediante nanotubos y efectuarán las técnicas descriptas anteriormente. Los resultados esperados son: Elaboración de un Ac aviario IgY anti-E. coli para prevenir infección de enterocitos, Profundización en el conocimiento acerca de los efectos citotóxicos de los nanotubos de carbono multilamelares, Generación de tratamiento alternativo para enfermedades entéricas porcinas.