957 resultados para Many body perturbation theory


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pion virtual compton scattering (VCS) via the reaction π-e→π-eγ was observed in the Fermilab E781 SELEX experiment. SELEX used a 600 GeV/c π- beam incident on target atomic electrons, detecting the incident π- and the final state π-, electron and γ. Theoretical predictions based on chiral perturbation theory are incorporated into a Monte Carlo simulation of the experiment and are compared to the data. The number of reconstructed events (=9) and their distribution with respect to the kinematic variables (for the kinematic region studied) are in reasonable accord with the predictions. The corresponding π- VCS experimental cross section is σ=38.8±13 nb, in agreement with the theoretical expectation of σ=34.7 nb.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It is proven that the pure spinor superstring in an AdS5 × S5 background remains conformally invariant at one loop level in the sigma model perturbation theory. © SISSA/ISAS 2003.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Using arguments based on BRST cohomology, the pure spinor formalism for the superstring in an AdS 5×S 5 background is proven to be BRST invariant and conformally invariant at the quantum level to all orders in perturbation theory. Cohomology arguments are also used to prove the existence of an infinite set of non-local BRST-invariant charges at the quantum level. © SISSA 2005.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work, motivated by non-ideal mechanical systems, we investigate the following O.D.E. ẋ = f (x) + εg (x, t) + ε2g (x, t, ε), where x ∈ Ω ⊂ ℝn, g, g are T periodic functions of t and there is a 0 ∈ Ω such that f (a 0) = 0 and f′ (a0) is a nilpotent matrix. When n = 3 and f (x) = (0, q (x 3) , 0) we get results on existence and stability of periodic orbits. We apply these results in a non ideal mechanical system: the Centrifugal Vibrator. We make a stability analysis of this dynamical system and get a characterization of the Sommerfeld Effect as a bifurcation of periodic orbits. © 2007 Birkhäuser Verlag, Basel.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Among the hidden pieces of the giant puzzle, which is our Solar system, the origins of irregularsatellites of the giant planets stand to be explained, while the origins of regular satellites arewell explained by the in situ formation model through matter accretion. Once they are notlocally formed, the most acceptable theory predicts that they had been formed elsewhere andbecame captured later, most likely during the last stage of planet formation. However, underthe restricted three-body problem theory, captures are temporary and there is still no assistedcapture mechanism which is well established. In a previous work, we showed that the capturemechanism of a binary asteroid under the co-planar four-body scenario yielded permanentcaptured objects with an orbital shape which is very similar to those of the actual progradeirregular Jovian satellites. By extending our previous study to a 3D case, here we demonstratethat the capture mechanism of a binary asteroid can produce permanent captures of objects byitself which have very similar orbits to irregular Jovian satellites. Some of the captured objectswithout aid of gas drag or other mechanisms present a triplet: semi-major axis, eccentricityand inclination, which is comparable to the already known irregular Jovian objects. © 2013 The Authors Published by Oxford University Press on behalf of the Royal Astronomical Society.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Matemática - IBILCE

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Matemática - IBILCE

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Física - IFT

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We analyze the scalar radiation emitted by a source in uniform circular motion in Minkowski spacetime interacting with a massive Klein-Gordon field. We assume the source rotating around a central object due to a Newtonian force. By considering the canonical quantization of this field, we use perturbation theory to compute the radiation emitted at the tree level. Regarding the initial state of the field as being the Minkowski vacuum, we compute the emission amplitude for the rotating source, assuming it as being minimally coupled to the massive Klein-Gordon field. We then compute the power emitted by the swirling source as a function of its angular velocity, as measured by asymptotic static observers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The one-dimensional Schrödinger equation with the singular harmonic oscillator is investigated. The Hermiticity of the operators related to observable physical quantities is used as a criterion to show that the attractive or repulsive singular oscillator exhibits an infinite number of acceptable solutions provided the parameter responsible for the singularity is greater than a certain critical value, in disagreement with the literature. The problem for the whole line exhibits a two-fold degeneracy in the case of the singular oscillator, and the intrusion of additional solutions in the case of a nonsingular oscillator. Additionally, it is shown that the solution of the singular oscillator can not be obtained from the nonsingular oscillator via perturbation theory.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We elucidate the close relationship between spontaneous time-reversal symmetry breaking and the physics of excitonic instabilities in strongly correlated multiband systems. The underlying mechanism responsible for the spontaneous breaking of time-reversal symmetry in a many-body system is closely related to the Cooper-like pairing instability of interband particle-hole pairs involving higher-order symmetries. Studies of such pairing instabilities have, however, mainly focused on the mean-field aspects of the virtual exciton condensate, which ignores the presence of the underlying collective Fermi-liquid excitations. We show that this relationship can be exploited to systematically derive the coupling of the condensate order parameter to the intraband Fermi-liquid particle-hole excitations. Surprisingly, we find that the static susceptibility is negative in the ordered phase when the coupling to the Fermi-liquid collective excitations are included, suggesting that a uniform condensate of virtual excitons, with or without time-reversal breaking, is an unstable phase at T = 0.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)