911 resultados para Machine Vision and Image Processing


Relevância:

100.00% 100.00%

Publicador:

Resumo:

La patología de la válvula mitral tiene gran prevalencia dentro de la enfermedad cardiaca. Con nuevas técnicas diagnósticas se perfecciona la caracterización de la válvula mitral y la ecocardiografía tridimensional tras esofágica, ha permitido obtener mejor información acerca de la patología valvular mitral. Objetivo principal : describir estructural y anatómicamente la válvula mitral, sus medidas y relaciones espaciales tridimensionales, en pacientes catalogados con válvula normal comparándolos con pacientes con insuficiencia mitral; en estudios realizados mediante ecocardiografía tras esofágica tridimensional. Materiales y métodos : estudio descriptivo, prospectivo con una serie de casos de válvulas mitrales normales comparadas con insuficientes : Obtención - Imagen tras esofágica 3D en tiempo real - Análisis y procesamiento de la imagen - Reconstrucción Tridimensional. Obtención de las diferentes medidas anatómicas estructurales que servirán para la tipificación de la válvula mitral en 3D. Análisis descriptivo : se utilizarán distribuciones de frecuencia y distribuciones porcentuales y en las variables de tipo cuantitativo medidas de tendencia central y medidas de variabilidad y dispersión. Resultados : se evaluaron durante el periodo de tiempo comprendido entre junio de 2008 y agosto de 2009 un total de 113 pacientes en total, encontrando claras diferencias en la estructura de las insuficiencias por prolapso. No hubo diferenciación en las cardiopatía isquémica vs dilatada. Conclusión : en el prolapso mitral aporta datos en la identificación etiológica ya sea degenerativa fibroelástica o enfermedad de Barlow. No hay diferencia significativa en la estructura que ayude caracterizar cardiopatía isquémica vs cardiopatía dilatada.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a novel two-pass algorithm constituted by Linear Hashtable Motion Estimation Algorithm (LHMEA) and Hexagonal Search (HEXBS). compensation. for block base motion On the basis of research from previous algorithms, especially an on-the-edge motion estimation algorithm called hexagonal search (HEXBS), we propose the LHMEA and the Two-Pass Algorithm (TPA). We introduce hashtable into video compression. In this paper we employ LHMEA for the first-pass search in all the Macroblocks (MB) in the picture. Motion Vectors (MV) are then generated from the first-pass and are used as predictors for second-pass HEXBS motion estimation, which only searches a small number of MBs. The evaluation of the algorithm considers the three important metrics being time, compression rate and PSNR. The performance of the algorithm is evaluated by using standard video sequences and the results are compared to current algorithms. Experimental results show that the proposed algorithm can offer the same compression rate as the Full Search. LHMEA with TPA has significant improvement on HEXBS and shows a direction for improving other fast motion estimation algorithms, for example Diamond Search.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a neuroscience inspired information theoretic approach to motion segmentation. Robust motion segmentation represents a fundamental first stage in many surveillance tasks. As an alternative to widely adopted individual segmentation approaches, which are challenged in different ways by imagery exhibiting a wide range of environmental variation and irrelevant motion, this paper presents a new biologically-inspired approach which computes the multivariate mutual information between multiple complementary motion segmentation outputs. Performance evaluation across a range of datasets and against competing segmentation methods demonstrates robust performance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work proposes a method to localize a simple humanoid robot, without embedded sensors, using images taken from an extern camera and image processing techniques. Once the robot is localized relative to the camera, supposing we know the position of the camera relative to the world, we can compute the position of the robot relative to the world. To make the camera move in the work space, we will use another mobile robot with wheels, which has a precise locating system, and will place the camera on it. Once the humanoid is localized in the work space, we can take the necessary actions to move it. Simultaneously, we will move the camera robot, so it will take good images of the humanoid. The mainly contributions of this work are: the idea of using another mobile robot to aid the navigation of a humanoid robot without and advanced embedded electronics; chosing of the intrinsic and extrinsic calibration methods appropriated to the task, especially in the real time part; and the collaborative algorithm of simultaneous navigation of the robots

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a novel, fast and accurate appearance-based method for infrared face recognition. By introducing the Optimum-Path Forest classifier, our objective is to get good recognition rates and effectively reduce the computational effort. The feature extraction procedure is carried out by PCA, and the results are compared to two other well known supervised learning classifiers; Artificial Neural Networks and Support Vector Machines. The achieved performance asserts the promise of the proposed framework. ©2009 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Feature selection aims to find the most important information from a given set of features. As this task can be seen as an optimization problem, the combinatorial growth of the possible solutions may be in-viable for a exhaustive search. In this paper we propose a new nature-inspired feature selection technique based on the bats behaviour, which has never been applied to this context so far. The wrapper approach combines the power of exploration of the bats together with the speed of the Optimum-Path Forest classifier to find the set of features that maximizes the accuracy in a validating set. Experiments conducted in five public datasets have demonstrated that the proposed approach can outperform some well-known swarm-based techniques. © 2012 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Engenharia Mecânica - FEIS

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The metropolitan region of São Paulo is the most populous of the country, this happens because of its great importance in the national economy and the job opportunities that are offered to the population. These factors result in intense population growth and urban expansion, reaching some non-habitable places of the metropolis, as areas of pipelines, which are very important for the transportation of natural gas, oil and its derivatives. Before the population growth of the region, these sites were unoccupied, do not presenting problems for the population. However, with the disorderly occupation is generated great anthropogenic pressure on the pipeline stitches, causing risks to people who are around them. Therefore it is extremely important to monitor the strip of pipelines through products and techniques of remote sensing and geoprocessing, enabling, through high spatial resolution images, identification of objects or phenomena that occur on Earth's surface that can alter the functioning and safety of pipelines. Therefore, this study aims to monitor a stretch of the area of the pipeline mesh GASPAL/OSVAT and Capuava Refinery (RECAP), located on the outskirts of the metropolitan area of São Paulo in the city of Mauá, who suffer great human pressure, proving thus the techniques of remote sensing and geographic information system (GIS) as effective tools for monitoring phenomena occurred in urban areas of great complexity. The monitoring was done by object-based classification applied in orbital images Ikonos II and RapidEye, of high spatial resolution and, image processing, detection of objects, segmentation, classification and editing were developed through the eCognition and ArcGis softwares. To determine the statistical accuracy of the mapping of the land cover of the stretch of pipeline in Maua, the results were analyzed by error matrix... (Complete abstract click electronic access below)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Despite the efficacy of minutia-based fingerprint matching techniques for good-quality images captured by optical sensors, minutia-based techniques do not often perform so well on poor-quality images or fingerprint images captured by small solid-state sensors. Solid-state fingerprint sensors are being increasingly deployed in a wide range of applications for user authentication purposes. Therefore, it is necessary to develop new fingerprint-matching techniques that utilize other features to deal with fingerprint images captured by solid-state sensors. This paper presents a new fingerprint matching technique based on fingerprint ridge features. This technique was assessed on the MSU-VERIDICOM database, which consists of fingerprint impressions obtained from 160 users (4 impressions per finger) using a solid-state sensor. The combination of ridge-based matching scores computed by the proposed ridge-based technique with minutia-based matching scores leads to a reduction of the false non-match rate by approximately 1.7% at a false match rate of 0.1%. © 2005 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recently there has been a considerable interest in dynamic textures due to the explosive growth of multimedia databases. In addition, dynamic texture appears in a wide range of videos, which makes it very important in applications concerning to model physical phenomena. Thus, dynamic textures have emerged as a new field of investigation that extends the static or spatial textures to the spatio-temporal domain. In this paper, we propose a novel approach for dynamic texture segmentation based on automata theory and k-means algorithm. In this approach, a feature vector is extracted for each pixel by applying deterministic partially self-avoiding walks on three orthogonal planes of the video. Then, these feature vectors are clustered by the well-known k-means algorithm. Although the k-means algorithm has shown interesting results, it only ensures its convergence to a local minimum, which affects the final result of segmentation. In order to overcome this drawback, we compare six methods of initialization of the k-means. The experimental results have demonstrated the effectiveness of our proposed approach compared to the state-of-the-art segmentation methods.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

[EN] In this paper we present a variational technique for the reconstruction of 3D cylindrical surfaces. Roughly speaking by a cylindrical surface we mean a surface that can be parameterized using the projection on a cylinder in terms of two coordinates, representing the displacement and angle in a cylindrical coordinate system respectively. The starting point for our method is a set of different views of a cylindrical surface, as well as a precomputed disparity map estimation between pair of images. The proposed variational technique is based on an energy minimization where we balance on the one hand the regularity of the cylindrical function given by the distance of the surface points to cylinder axis, and on the other hand, the distance between the projection of the surface points on the images and the expected location following the precomputed disparity map estimation between pair of images. One interesting advantage of this approach is that we regularize the 3D surface by means of a bi-dimensio al minimization problem. We show some experimental results for large stereo sequences.