946 resultados para MURINE PERITONEAL-MACROPHAGES


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In addition to its' established metabolic and cardioprotective effects, glucagon-like peptide-1 (GLP-1) reduces post-infarction heart failure via preferential actions on the extracellular matrix (ECM). Here, we investigated whether the GLP-1 mimetic, exendin-4, modulates cardiac remodelling in experimental diabetes by specifically targeting inflammatory/ECM pathways, which are characteristically dysregulated in this setting. Adult mice were subjected to streptozotocin (STZ) diabetes and infused with exendin-4/insulin/saline from 0 to 4 or 4-12 weeks. Exendin-4 and insulin improved metabolic parameters in diabetic mice after 12 weeks, but only exendin-4 reduced cardiac diastolic dysfunction and interstitial fibrosis in parallel with altered ECM gene expression. Whilst myocardial inflammation was not evident at 12 weeks, CD11b-F4/80(++) macrophage infiltration at 4 weeks was increased and reduced by exendin-4, together with an improved cytokine profile. Notably, media collected from high glucose-treated macrophages induced cardiac fibroblast differentiation, which was prevented by exendin-4, whilst several cytokines/chemokines were differentially expressed/secreted by exendin-4-treated macrophages, some of which were modulated in STZ exendin-4-treated hearts. Our findings suggest that exendin-4 preferentially protects against ECM remodelling and diastolic dysfunction in experimental diabetes via glucose-dependent modulation of paracrine communication between infiltrating macrophages and resident fibroblasts, thereby indicating that cell-specific targeting of GLP-1 signalling may be a viable therapeutic strategy in this setting.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação de Mestrado, Oncobiologia: Mecanismos Moleculares do Cancro, Faculdade de Ciências e Tecnologia, Universidade do Algarve, 2015

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tese de doutoramento, Ciências Biomédicas (Microbiologia e Parasitologia), Universidade de Lisboa, Faculdade de Medicina, 2014

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tese de doutoramento, Farmácia (Biologia Celular e Molecular), Universidade de Lisboa, Faculdade de Farmácia, 2014

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mammalian midbrain dopaminergic systems arising in the substantia nigra pars compacta (SNc) and ventral tegmental area (VTA) are critical for coping behaviours and are implicated in neuropsychiatric disorders where early life challenges comprise significant risk factors. Here, we aimed to advance our hypothesis that glucocorticoids (GCs), recognised key players in neurobiological programming, target development within these systems, with a novel focus on the astrocytic population. Mice received antenatal GC treatment (AGT) by including the synthetic GC, dexamethasone, in the mothers' drinking water on gestational days 16-19; controls received normal drinking water. Analyses of regional shapes and volumes of the adult SNc and VTA demonstrated that AGT induced long-term, dose-dependent, structural changes that were accompanied by profound effects on astrocytes (doubling/tripling of numbers and/or density). Additionally, AGT induced long-term changes in the population size and distribution of SNc/VTA dopaminergic neurons, confirming and extending our previous observations made in rats. Furthermore, glial/neuronal structural remodelling was sexually dimorphic and depended on the AGT dose and sub-region of the SNc/VTA. Investigations within the neonatal brain revealed that these long-term organisational effects of AGT depend, at least in part, on targeting perinatal processes that determine astrocyte density and programmed cell death in dopaminergic neurons. Collectively, our characterisation of enduring, AGT-induced, sex-specific cytoarchitectural disturbances suggests novel mechanistic links for the strong association between early environmental challenge (inappropriate exposure to excess GCs) and vulnerability to developing aberrant behaviours in later life, with translational implications for dopamine-associated disorders (such as schizophrenia, ADHD, autism, depression), which typically show a sex bias

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bladder cancer is a common urologic cancer and the majority has origin in the urothelium. Patients with intermediate and high risk of recurrence/progression bladder cancer are treated with intravesical instillation with Bacillus Calmette-Guérin, however, approximately 30% of patients do not respond to treatment. At the moment, there are no accepted biomarkers do predict treatment outcome and an early identification of patients better served by alternative therapeutics. The treatment initiates a cascade of cytokines responsible by recruiting macrophages to the tumor site that have been shown to influence treatment outcome. Effective BCG therapy needs precise activation of the Th1 immune pathway associated with M1 polarized macrophages. However, tumor-associated macrophages (TAMs) often assume an immunoregulatory M2 phenotype, either immunosuppressive or angiogenic, that interfere in different ways with the BCG induced antitumor immune response. The M2 macrophage is influenced by different microenvironments in the stroma and the tumor. In particular, the degree of hypoxia in the tumors is responsible by the recruitment and differentiation of macrophages into the M2 angiogenic phenotype, suggested to be associated with the response to treatment. Nevertheless, neither the macrophage phenotypes present nor the influence of localization and hypoxia have been addressed in previous studies. Therefore, this work devoted to study the influence of TAMs, in particular of the M2 phenotype taking into account their localization (stroma or tumor) and the degree of hypoxia in the tumor (low or high) in BCG treatment outcome. The study included 99 bladder cancer patients treated with BCG. Tumors resected prior to treatment were evaluated using immunohistochemistry for CD68 and CD163 antigens, which identify a lineage macrophage marker and a M2-polarized specific cell surface receptor, respectively. Tumor hypoxia was evaluated based on HIF-1α expression. As a main finding it was observed that a high predominance of CD163+ macrophage counts in the stroma of tumors under low hypoxia was associated with BCG immunotherapy failure, possibly due to its immunosuppressive phenotype. This study further reinforces the importance the tumor microenvironment in the modulation of BCG responses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE: Hereditary hemochromatosis (HH) is a disease caused by mutations in the Hfe gene characterised by systemic iron overload and associated with an increased prevalence of osteoarthritis (OA) but the role of iron overload in the development of OA is still undefined. To further understand the molecular mechanisms involved we have used a murine model of HH and studied the progression of experimental OA under mechanical stress. DESIGN: OA was surgically induced in the knee joints of 10-week-old C57BL6 (wild-type) mice and Hfe-KO mice. OA progression was assessed using histology, micro CT, gene expression and immunohistochemistry at 8 weeks after surgery. RESULTS: Hfe-KO mice showed a systemic iron overload and an increased iron accumulation in the knee synovial membrane following surgery. The histological OA score was significantly higher in the Hfe-KO mice at 8 weeks after surgery. Micro CT study of the proximal tibia revealed increased subchondral bone volume and increased trabecular thickness. Gene expression and immunohistochemical analysis showed a significant increase in the expression of matrix metallopeptidase 3 (MMP-3) in the joints of Hfe-KO mice compared with control mice at 8 weeks after surgery. CONCLUSIONS: HH was associated with an accelerated development of OA in mice. Our findings suggest that synovial iron overload has a definite role in the progression of HH-related OA

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Transforming growth factor beta (TGF-beta) and platelet-derived growth factor A (PDGFAlpha) play a central role in tissue morphogenesis and repair, but their interplay remain poorly understood. The nuclear factor I C (NFI-C) transcription factor has been implicated in TGF-beta signaling, extracellular matrix deposition, and skin appendage pathologies, but a potential role in skin morphogenesis or healing had not been assessed. To evaluate this possibility, we performed a global gene expression analysis in NFI-C(-/-) and wild-type embryonic primary murine fibroblasts. This indicated that NFI-C acts mostly to repress gene expression in response to TGF-beta1. Misregulated genes were prominently overrepresented by regulators of connective tissue inflammation and repair. In vivo skin healing revealed a faster inflammatory stage and wound closure in NFI-C(-/-) mice. Expression of PDGFA and PDGF-receptor alpha were increased in wounds of NFI-C(-/-) mice, explaining the early recruitment of macrophages and fibroblasts. Differentiation of fibroblasts to contractile myofibroblasts was also elevated, providing a rationale for faster wound closure. Taken together with the role of TGF-beta in myofibroblast differentiation, our results imply a central role of NFI-C in the interplay of the two signaling pathways and in regulation of the progression of tissue regeneration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A murine monoclonal antibody (SJL 2-4) specific for the antigen apo-cytochrome c was shown to inhibit both antigen-induced proliferation and lymphokine secretion by an apo-cytochrome c-specific BALB/c helper T cell clone. The inhibition was specific because additional apo-cytochrome c-specific T cell clones were not inhibited by the same monoclonal antibody. Time course studies of the inhibition indicated that the initial 8 hr of contact between T cell clones and antigen-presenting cells were critical for activation of the T cell clones. Inhibition of T cell functions by antigen-specific antibodies appeared to correlate with the antibody-antigen binding constant because a second monoclonal antibody (Cyt-1-59), with identical specificity but with a lower affinity constant for apo-cytochrome c, had very little inhibitory effect on the proliferation or lymphokine secretion of apo-cytochrome c-specific T cell clones.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Adaptive immunity is initiated in T-cell zones of secondary lymphoid organs. These zones are organized in a rigid 3D network of fibroblastic reticular cells (FRCs) that are a rich cytokine source. In response to lymph-borne antigens, draining lymph nodes (LNs) expand several folds in size, but the fate and role of the FRC network during immune response is not fully understood. Here we show that T-cell responses are accompanied by the rapid activation and growth of FRCs, leading to an expanded but similarly organized network of T-zone FRCs that maintains its vital function for lymphocyte trafficking and survival. In addition, new FRC-rich environments were observed in the expanded medullary cords. FRCs are activated within hours after the onset of inflammation in the periphery. Surprisingly, FRC expansion depends mainly on trapping of naïve lymphocytes that is induced by both migratory and resident dendritic cells. Inflammatory signals are not required as homeostatic T-cell proliferation was sufficient to trigger FRC expansion. Activated lymphocytes are also dispensable for this process, but can enhance the later growth phase. Thus, this study documents the surprising plasticity as well as the complex regulation of FRC networks allowing the rapid LN hyperplasia that is critical for mounting efficient adaptive immunity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

INTRODUCTION: Solid tumors are known to have an abnormal vasculature that limits the distribution of chemotherapy. We have recently shown that tumor vessel modulation by low-dose photodynamic therapy (L-PDT) could improve the uptake of macromolecular chemotherapeutic agents such as liposomal doxorubicin (Liporubicin) administered subsequently. However, how this occurs is unknown. Convection, the main mechanism for drug transport between the intravascular and extravascular spaces, is mostly related to interstitial fluid pressure (IFP) and tumor blood flow (TBF). Here, we determined the changes of tumor and surrounding lung IFP and TBF before, during, and after vascular L-PDT. We also evaluated the effect of these changes on the distribution of Liporubicin administered intravenously (IV) in a lung sarcoma metastasis model. MATERIALS AND METHODS: A syngeneic methylcholanthrene-induced sarcoma cell line was implanted subpleurally in the lung of Fischer rats. Tumor/surrounding lung IFP and TBF changes induced by L-PDT were determined using the wick-in-needle technique and laser Doppler flowmetry, respectively. The spatial distribution of Liporubicin in tumor and lung tissues following IV drug administration was then assessed in L-PDT-pretreated animals and controls (no L-PDT) by epifluorescence microscopy. RESULTS: L-PDT significantly decreased tumor but not lung IFP compared to controls (no L-PDT) without affecting TBF. These conditions were associated with a significant improvement in Liporubicin distribution in tumor tissues compared to controls (P < .05). DISCUSSION: L-PDT specifically enhanced convection in blood vessels of tumor but not of normal lung tissue, which was associated with a significant improvement of Liporubicin distribution in tumors compared to controls.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cellular responses to LPS, the major lipid component of the outer membrane of Gram-negative bacteria, are enhanced markedly by the LPS-binding protein (LBP), a plasma protein that transfers LPS to the cell surface CD14 present on cells of the myeloid lineage. LBP has been shown previously to potentiate the host response to LPS. However, experiments performed in mice with a disruption of the LBP gene have yielded discordant results. Whereas one study showed that LBP knockout mice were resistant to endotoxemia, another study did not confirm an important role for LBP in the response of mice challenged in vivo with low doses of LPS. Consequently, we generated rat mAbs to murine LBP to investigate further the contribution of LBP in experimental endotoxemia. Three classes of mAbs were obtained. Class 1 mAbs blocked the binding of LPS to LBP; class 2 mAbs blocked the binding of LPS/LBP complexes to CD14; class 3 mAbs bound LBP but did not suppress LBP activity. In vivo, class 1 and class 2 mAbs suppressed LPS-induced TNF production and protected mice from lethal endotoxemia. These results show that the neutralization of LBP accomplished by blocking either the binding of LPS to LBP or the binding of LPS/LBP complexes to CD14 protects the host from LPS-induced toxicity, confirming that LBP is a critical component of innate immunity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mechanisms regulating systemic and mucosal IgA responses in the respiratory tract are incompletely understood. Using virus-like particles loaded with single-stranded RNA as a ligand for TLR7, we found that systemic vs mucosal IgA responses in mice were differently regulated. Systemic IgA responses following s.c. immunization were T cell independent and did not require TACI or TGFbeta, whereas mucosal IgA production was dependent on Th cells, TACI, and TGFbeta. Strikingly, both responses required TLR7 signaling, but systemic IgA depended upon TLR7 signaling directly to B cells whereas mucosal IgA required TLR7 signaling to lung dendritic cells and alveolar macrophages. Our data show that IgA switching is controlled differently according to the cell type receiving TLR signals. This knowledge should facilitate the development of IgA-inducing vaccines.