839 resultados para MOVING-OBJECTS
Resumo:
Seyfert galaxies are the closest active galactic nuclei. As such, we can use
them to test the physical properties of the entire class of objects. To investigate
their general properties, I took advantage of different methods of data analysis. In
particular I used three different samples of objects, that, despite frequent overlaps,
have been chosen to best tackle different topics: the heterogeneous BeppoS AX
sample was thought to be optimized to test the average hard X-ray (E above 10 keV)
properties of nearby Seyfert galaxies; the X-CfA was thought the be optimized to
compare the properties of low-luminosity sources to the ones of higher luminosity
and, thus, it was also used to test the emission mechanism models; finally, the
XMM–Newton sample was extracted from the X-CfA sample so as to ensure a
truly unbiased and well defined sample of objects to define the average properties
of Seyfert galaxies.
Taking advantage of the broad-band coverage of the BeppoS AX MECS and
PDS instruments (between ~2-100 keV), I infer the average X-ray spectral propertiesof nearby Seyfert galaxies and in particular the photon index (
Resumo:
Ambient Intelligence (AmI) envisions a world where smart, electronic environments are aware and responsive to their context. People moving into these settings engage many computational devices and systems simultaneously even if they are not aware of their presence. AmI stems from the convergence of three key technologies: ubiquitous computing, ubiquitous communication and natural interfaces. The dependence on a large amount of fixed and mobile sensors embedded into the environment makes of Wireless Sensor Networks one of the most relevant enabling technologies for AmI. WSN are complex systems made up of a number of sensor nodes, simple devices that typically embed a low power computational unit (microcontrollers, FPGAs etc.), a wireless communication unit, one or more sensors and a some form of energy supply (either batteries or energy scavenger modules). Low-cost, low-computational power, low energy consumption and small size are characteristics that must be taken into consideration when designing and dealing with WSNs. In order to handle the large amount of data generated by a WSN several multi sensor data fusion techniques have been developed. The aim of multisensor data fusion is to combine data to achieve better accuracy and inferences than could be achieved by the use of a single sensor alone. In this dissertation we present our results in building several AmI applications suitable for a WSN implementation. The work can be divided into two main areas: Multimodal Surveillance and Activity Recognition. Novel techniques to handle data from a network of low-cost, low-power Pyroelectric InfraRed (PIR) sensors are presented. Such techniques allow the detection of the number of people moving in the environment, their direction of movement and their position. We discuss how a mesh of PIR sensors can be integrated with a video surveillance system to increase its performance in people tracking. Furthermore we embed a PIR sensor within the design of a Wireless Video Sensor Node (WVSN) to extend its lifetime. Activity recognition is a fundamental block in natural interfaces. A challenging objective is to design an activity recognition system that is able to exploit a redundant but unreliable WSN. We present our activity in building a novel activity recognition architecture for such a dynamic system. The architecture has a hierarchical structure where simple nodes performs gesture classification and a high level meta classifiers fuses a changing number of classifier outputs. We demonstrate the benefit of such architecture in terms of increased recognition performance, and fault and noise robustness. Furthermore we show how we can extend network lifetime by performing a performance-power trade-off. Smart objects can enhance user experience within smart environments. We present our work in extending the capabilities of the Smart Micrel Cube (SMCube), a smart object used as tangible interface within a tangible computing framework, through the development of a gesture recognition algorithm suitable for this limited computational power device. Finally the development of activity recognition techniques can greatly benefit from the availability of shared dataset. We report our experience in building a dataset for activity recognition. Such dataset is freely available to the scientific community for research purposes and can be used as a testbench for developing, testing and comparing different activity recognition techniques.
Resumo:
FIR spectroscopy is an alternative way of collecting spectra of many inorganic pigments and corrosion products found on art objects, which is not normally observed in the MIR region. Most FIR spectra are traditionally collected in transmission mode but as a real novelty it is now also possible to record FIR spectra in ATR (Attenuated Total Reflectance) mode. In FIR transmission we employ polyethylene (PE) for preparation of pellets by embedding the sample in PE. Unfortunately, the preparation requires heating of the PE in order to produces at transparent pellet. This will affect compounds with low melting points, especially those with structurally incorporated water. Another option in FIR transmission is the use of thin films. We test the use of polyethylene thin film (PETF), both commercial and laboratory-made PETF. ATR collection of samples is possible in both the MIR and FIR region on solid, powdery or liquid samples. Changing from the MIR to the FIR region is easy as it simply requires the change of detector and beamsplitter (which can be performed within a few minutes). No preparation of the sample is necessary, which is a huge advantage over the PE transmission method. The most obvious difference, when comparing transmission with ATR, is the distortion of band shape (which appears asymmetrical in the lower wavenumber region) and intensity differences. However, the biggest difference can be the shift of strong absorbing bands moving to lower wavenumbers in ATR mode. The sometimes huge band shift necessitates the collection of standard library spectra in both FIR transmission and ATR modes, provided these two methods of collecting are to be employed for analyses of unknown samples. Standard samples of 150 pigment and corrosion compounds are thus collected in both FIR transmission and ATR mode in order to build up a digital library of spectra for comparison with unknown samples. XRD, XRF and Raman spectroscopy assists us in confirming the purity or impurity of our standard samples. 24 didactic test tables, with known pigment and binder painted on the surface of a limestone tablet, are used for testing the established library and different ways of collecting in ATR and transmission mode. In ATR, micro samples are scratched from the surface and examined in both the MIR and FIR region. Additionally, direct surface contact of the didactic tablets with the ATR crystal are tested together with water enhanced surface contact. In FIR transmission we compare the powder from our test tablet on the laboratory PETF and embedded in PE. We also compare the PE pellets collected using a 4x beam condenser, focusing the IR beam area from 8 mm to 2 mm. A few samples collected from a mural painting in a Nepalese temple, corrosion products collected from archaeological Chinese bronze objects and samples from a mural paintings in an Italian abbey, are examined by ATR or transmission spectroscopy.
Resumo:
RTLS and RFID systems are becoming more and more important in several fields. When these systems meet the UWB technology, they can take advantage of each other strengths. Since nowadays a strong importance is given to the "green" technology, we chose to adopt a passive solution. In this case the backscattering modulation can be used to carry data. Therefore it is necessary to analyze the behavior of the antennas used as tags, when they are closed to dierent material objects. In particular, the antenna mode part has been deeply observed, as it is the crucial part of the signal regarding the backscatter modulation.
Resumo:
The common thread of this thesis is the will of investigating properties and behavior of assemblies. Groups of objects display peculiar properties, which can be very far from the simple sum of respective components’ properties. This is truer, the smaller is inter-objects distance, i.e. the higher is their density, and the smaller is the container size. “Confinement” is in fact a key concept in many topics explored and here reported. It can be conceived as a spatial limitation, that yet gives origin to unexpected processes and phenomena based on inter-objects communication. Such phenomena eventually result in “non-linear properties”, responsible for the low predictability of large assemblies. Chapter 1 provides two insights on surface chemistry, namely (i) on a supramolecular assembly based on orthogonal forces, and (ii) on selective and sensitive fluorescent sensing in thin polymeric film. In chapters 2 to 4 confinement of molecules plays a major role. Most of the work focuses on FRET within core-shell nanoparticles, investigated both through a simulation model and through experiments. Exciting results of great applicative interest are drawn, such as a method of tuning emission wavelength at constant excitation, and a way of overcoming self-quenching processes by setting up a competitive deactivation channel. We envisage applications of these materials as labels for multiplexing analysis, and in all fields of fluorescence imaging, where brightness coupled with biocompatibility and water solubility is required. Adducts of nanoparticles and molecular photoswitches are investigated in the context of superresolution techniques for fluorescence microscopy. In chapter 5 a method is proposed to prepare a library of functionalized Pluronic F127, which gives access to a twofold “smart” nanomaterial, namely both (i)luminescent and (ii)surface-functionalized SCSSNPs. Focus shifts in chapter 6 to confinement effects in an upper size scale. Moving from nanometers to micrometers, we investigate the interplay between microparticles flowing in microchannels where a constriction affects at very long ranges structure and dynamics of the colloidal paste.
Resumo:
In der vorliegenden Arbeit wurde das Objektbewegungssehen des Goldfischs betrachtet. Zuerst musste eine geeignete Methode gefunden werden, diese Form der Bewegungswahrnehmung untersuchen zu können, da bisherige Experimente zum Bewegungssehen beim Goldfisch ausschließlich mit Hilfe der optomotorischen Folgereaktion gemacht wurden. Anschließend sollte die Frage geklärt werden, ob das Objektbewegungssehen genau wie das Bewegungssehen einer Großfeldbewegung farbenblind ist und welcher Zapfentyp daran beteiligt ist. Die Verwendung eines Zufallpunktmusters zur Dressur auf ein bewegtes Objekt hat sich als äußert erfolgreich herausgestellt. Diese Methode hat den Vorteil, dass sich die Versuchstiere ausschließlich aufgrund der Bewegungsinformation orientieren können. In den Rot-Grün- und Blau-Grün-Transferversuchen zeigte sich, dass das Objektbewegungssehen beim Goldfisch farbenblind ist, aber erstaunlicherweise nicht vom L-Zapfen vermittelt wird, sondern wahrscheinlich vom M-Zapfen. Welchen Vorteil es haben könnte, dass für die verschiedenen Formen der Bewegungswahrnehmung verschiedene Eingänge benutzt werden, kann mit diesen Versuchen nicht geklärt werden. Farbenblindheit des Bewegungssehens scheint eine Eigenschaft visueller Systeme allgemein zu sein. Beim Menschen ist diese Frage im Moment noch nicht geklärt und wird weiterhin diskutiert, da es sowohl Experimente gibt, die zeigen, dass es farbenblind ist, als auch andere, die Hinweise darauf geben, dass es nicht farbenblind ist. Der Vorteil der Farbenblindheit eines bewegungsdetektierenden visuellen Systems zeigt sich auch in der Technik beim Maschinen Sehen. Hier wird ebenfalls auf Farbinformation verzichtet, was zum einen eine Datenreduktion mit sich bringt und zum anderen dazu führt, dass korrespondierende Bildpunkte leichter gefunden werden können. Diese werden benötigt, um Bewegungsvektoren zu bestimmen und letztlich Bewegung zu detektieren.
Resumo:
L’attività di ricerca contenuta in questa tesi si è concentrata nello sviluppo e nell’implementazione di tecniche per la co-simulazione e il co-progetto non lineare/elettromagnetico di sistemi wireless non convenzionali. Questo lavoro presenta un metodo rigoroso per considerare le interazioni tra due sistemi posti sia in condizioni di campo vicino che in condizioni di campo lontano. In sostanza, gli effetti del sistema trasmittente sono rappresentati da un generatore equivalente di Norton posto in parallelo all’antenna del sistema ricevente, calcolato per mezzo del teorema di reciprocità e del teorema di equivalenza. La correttezza del metodo è stata verificata per mezzo di simulazioni e misure, concordi tra loro. La stessa teoria, ampliata con l’introduzione degli effetti di scattering, è stata usata per valutare una condizione analoga, dove l’elemento trasmittente coincide con quello ricevente (DIE) contenuto all’interno di una struttura metallica (package). I risultati sono stati confrontati con i medesimi ottenibili tramite tecniche FEM e FDTD/FIT, che richiedono tempi di simulazione maggiori di un ordine di grandezza. Grazie ai metodi di co-simulazione non lineari/EM sopra esposti, è stato progettato e verificato un sistema di localizzazione e identificazione di oggetti taggati posti in ambiente indoor. Questo è stato ottenuto dotando il sistema di lettura, denominato RID (Remotely Identify and Detect), di funzioni di scansione angolare e della tecnica di RADAR mono-pulse. Il sistema sperimentale, creato con dispositivi low cost, opera a 2.5 GHz ed ha le dimensioni paragonabili ad un normale PDA. E’ stato sperimentata la capacità del RID di localizzare, in scenari indoor, oggetti statici e in movimento.
Resumo:
In computer systems, specifically in multithread, parallel and distributed systems, a deadlock is both a very subtle problem - because difficult to pre- vent during the system coding - and a very dangerous one: a deadlocked system is easily completely stuck, with consequences ranging from simple annoyances to life-threatening circumstances, being also in between the not negligible scenario of economical losses. Then, how to avoid this problem? A lot of possible solutions has been studied, proposed and implemented. In this thesis we focus on detection of deadlocks with a static program analysis technique, i.e. an analysis per- formed without actually executing the program. To begin, we briefly present the static Deadlock Analysis Model devel- oped for coreABS−− in chapter 1, then we proceed by detailing the Class- based coreABS−− language in chapter 2. Then, in Chapter 3 we lay the foundation for further discussions by ana- lyzing the differences between coreABS−− and ASP, an untyped Object-based calculi, so as to show how it can be possible to extend the Deadlock Analysis to Object-based languages in general. In this regard, we explicit some hypotheses in chapter 4 first by present- ing a possible, unproven type system for ASP, modeled after the Deadlock Analysis Model developed for coreABS−−. Then, we conclude our discussion by presenting a simpler hypothesis, which may allow to circumvent the difficulties that arises from the definition of the ”ad-hoc” type system discussed in the aforegoing chapter.
Resumo:
During this thesis a new telemetric recording system has been developed allowing ECoG/EEG recordings in freely behaving rodents (Lapray et al., 2008; Lapray et al., in press). This unit has been shown to not generate any discomfort in the implanted animals and to allow recordings in a wide range of environments. In the second part of this work the developed technique has been used to investigate what cortical activity was related to the process of novelty detection in rats’ barrel cortex. We showed that the detection of a novel object is accompanied in the barrel cortex by a transient burst of activity in the γ frequency range (40-47 Hz) around 200 ms after the whiskers contact with the object (Lapray et al., accepted). This activity was associated to a decrease in the lower range of γ frequencies (30-37 Hz). This network activity may represent the optimal oscillatory pattern for the propagation and storage of new information in memory related structures. The frequency as well as the timing of appearance correspond well with other studies concerning novelty detection related burst of activity in other sensory systems (Barcelo et al., 2006; Haenschel et al., 2000; Ranganath & Rainer, 2003). Here, the burst of activity is well suited to induce plastic and long-lasting modifications in neuronal circuits (Harris et al., 2003). The debate is still open whether synchronised activity in the brain is a part of information processing or an epiphenomenon (Shadlen & Movshon, 1999; Singer, 1999). The present work provides further evidence that neuronal network activity in the γ frequency range plays an important role in the neocortical processing of sensory stimuli and in higher cognitive functions.
Resumo:
Mainstream hardware is becoming parallel, heterogeneous, and distributed on every desk, every home and in every pocket. As a consequence, in the last years software is having an epochal turn toward concurrency, distribution, interaction which is pushed by the evolution of hardware architectures and the growing of network availability. This calls for introducing further abstraction layers on top of those provided by classical mainstream programming paradigms, to tackle more effectively the new complexities that developers have to face in everyday programming. A convergence it is recognizable in the mainstream toward the adoption of the actor paradigm as a mean to unite object-oriented programming and concurrency. Nevertheless, we argue that the actor paradigm can only be considered a good starting point to provide a more comprehensive response to such a fundamental and radical change in software development. Accordingly, the main objective of this thesis is to propose Agent-Oriented Programming (AOP) as a high-level general purpose programming paradigm, natural evolution of actors and objects, introducing a further level of human-inspired concepts for programming software systems, meant to simplify the design and programming of concurrent, distributed, reactive/interactive programs. To this end, in the dissertation first we construct the required background by studying the state-of-the-art of both actor-oriented and agent-oriented programming, and then we focus on the engineering of integrated programming technologies for developing agent-based systems in their classical application domains: artificial intelligence and distributed artificial intelligence. Then, we shift the perspective moving from the development of intelligent software systems, toward general purpose software development. Using the expertise maturated during the phase of background construction, we introduce a general-purpose programming language named simpAL, which founds its roots on general principles and practices of software development, and at the same time provides an agent-oriented level of abstraction for the engineering of general purpose software systems.
Resumo:
Die Frage, wie es zur visuellen Wahrnehmung räumlicher Tiefe kommt, wenn das Retinabild nur zweidimensional ist, gehört zu den grundlegenden Proble-men der Hirnforschung. Für Tiere, die sich aktiv in ihrer Umgebung bewegen, herrscht ein großer Selektionsdruck Entfernungen und Größen richtig einzu-schätzen. Ziel der vorliegenden Arbeit war es, herauszufinden, ob und wie gut Goldfische Objekte allein aufgrund des Abstandes unterscheiden können und woraus sie Information über den Abstand gewinnen. Hierzu wurde ein Ver-suchsaufbau mit homogen weißem Hintergrund entworfen, in dem die Akkom-modation als Entfernungsinformationen verwendet werden kann, weniger je-doch die Bewegungsparallaxe. Die Goldfische lernten durch operante Konditio-nierung einen Stimulus (schwarze Kreisscheibe) in einem bestimmten Abstand zu wählen, während ein anderer, gleichgroßer Stimulus so entfernt wie möglich präsentiert wurde. Der Abstand zwischen den Stimuli wurde dann verringert, bis die Goldfische keine sichere Wahl für den Dressurstimulus mehr treffen konnten. Die Unterscheidungsleistung der Goldfische wurde mit zunehmendem Abstand des Dressurstimulus immer geringer. Eine Wiederholung der Versuche mit unscharfen Stimu¬lus¬kon¬turen brachte keine Verschlechterung in der Unter-scheidung, was Akkommodation wenig wahrscheinlich macht. Um die Größen-konstanz beim Goldfisch zu testen, wurden die Durchmesser der unterschiedlich entfernten Stimuli so angepasst, dass sie für den Goldfisch die gleiche Retina-bildgröße hatten. Unter diesen Bedingungen waren die Goldfische nicht in der Lage verschieden entfernte Stimuli zu unterscheiden und somit Größenkonstanz zu leisten. Es fand demnach keine echte Entfernungsbestimmung oder Tiefen-wahrneh¬mung statt. Die Unterscheidung der verschieden entfernten Stimuli erfolgte allein durch deren Abbildungsgröße auf der Retina. Dass die Goldfische bei diesem Experiment nicht akkommodieren, wurde durch Infrarot-Photoretinoskopie gezeigt. Somit lässt sich Akkommodation für die Entfer-nungsbestimmung in diesen Versuchen ausschließen. Für diese Leistung und die Größenkonstanz ist vermutlich die Bewegungsparallaxe entscheidend.
Resumo:
n the last few years, the vision of our connected and intelligent information society has evolved to embrace novel technological and research trends. The diffusion of ubiquitous mobile connectivity and advanced handheld portable devices, amplified the importance of the Internet as the communication backbone for the fruition of services and data. The diffusion of mobile and pervasive computing devices, featuring advanced sensing technologies and processing capabilities, triggered the adoption of innovative interaction paradigms: touch responsive surfaces, tangible interfaces and gesture or voice recognition are finally entering our homes and workplaces. We are experiencing the proliferation of smart objects and sensor networks, embedded in our daily living and interconnected through the Internet. This ubiquitous network of always available interconnected devices is enabling new applications and services, ranging from enhancements to home and office environments, to remote healthcare assistance and the birth of a smart environment. This work will present some evolutions in the hardware and software development of embedded systems and sensor networks. Different hardware solutions will be introduced, ranging from smart objects for interaction to advanced inertial sensor nodes for motion tracking, focusing on system-level design. They will be accompanied by the study of innovative data processing algorithms developed and optimized to run on-board of the embedded devices. Gesture recognition, orientation estimation and data reconstruction techniques for sensor networks will be introduced and implemented, with the goal to maximize the tradeoff between performance and energy efficiency. Experimental results will provide an evaluation of the accuracy of the presented methods and validate the efficiency of the proposed embedded systems.
Resumo:
Detection, localization and tracking of non-collaborative objects moving inside an area is of great interest to many surveillance applications. An ultra- wideband (UWB) multistatic radar is considered as a good infrastructure for such anti-intruder systems, due to the high range resolution provided by the UWB impulse-radio and the spatial diversity achieved with a multistatic configuration. Detection of targets, which are typically human beings, is a challenging task due to reflections from unwanted objects in the area, shadowing, antenna cross-talks, low transmit power, and the blind zones arised from intrinsic peculiarities of UWB multistatic radars. Hence, we propose more effective detection, localization, as well as clutter removal techniques for these systems. However, the majority of the thesis effort is devoted to the tracking phase, which is an essential part for improving the localization accuracy, predicting the target position and filling out the missed detections. Since UWB radars are not linear Gaussian systems, the widely used tracking filters, such as the Kalman filter, are not expected to provide a satisfactory performance. Thus, we propose the Bayesian filter as an appropriate candidate for UWB radars. In particular, we develop tracking algorithms based on particle filtering, which is the most common approximation of Bayesian filtering, for both single and multiple target scenarios. Also, we propose some effective detection and tracking algorithms based on image processing tools. We evaluate the performance of our proposed approaches by numerical simulations. Moreover, we provide experimental results by channel measurements for tracking a person walking in an indoor area, with the presence of a significant clutter. We discuss the existing practical issues and address them by proposing more robust algorithms.
Resumo:
Tra le plurime conseguenze dell’avvento del digitale, la riarticolazione dei rapporti tra immagine statica e immagine in movimento è certamente una delle più profonde. Sintomatica dei cambiamenti in atto sia nei film studies sia nella storia dell’arte, tale riarticolazione richiede un ripensamento dei confini disciplinari tradizionali entro cui il cinema e la fotografia sono stati affrontati come oggetti di studio separati e distinti. Nell’adottare un approccio molteplice, volto a comprendere prospettive provenienti dalla New Film History e dalla media archaeology, dalla teoria dell’arte e dagli studi visuali, questo lavoro esplora l’esistenza di una relazione dialettica tra il cinema e la fotografia intesa in modo duplice: come tensione costitutiva tra due media indissolubilmente connessi – non tanto in considerazione di un medesimo principio realistico di rappresentazione quanto, piuttosto, in virtù di uno scambio incessante nella modellizzazione di categorie quali il tempo, il movimento, l’immobilità, l’istante, la durata; come istanza peculiare della pratica artistica contemporanea, paradigma di riferimento nella produzione estetica di immagini. La tesi si suddivide in tre capitoli. Il primo si concentra sul rapporto tra l’immobilità e il movimento dell’immagine come cifra in grado di connettere l’estetica delle attrazioni e la cronofotografia a una serie di esperienze filmiche e artistiche prodotte nei territori delle avanguardie. Il secondo capitolo considera l’emergenza, dagli anni Novanta, di pratiche artistiche in cui l’incontro intermediale tra film e fotografia fornisce modelli di analisi volti all’indagine dell’attuale condizione estetica e tecnologica. Il terzo offre una panoramica critica su un caso di studio, la GIF art. La GIF è un formato digitale obsoleto che consente di produrre immagini che appaiono, simultaneamente, come fisse e animate; nel presente lavoro, la GIF è discussa come un medium capace di contraddire i confini attraverso cui concepiamo l’immagine fissa e in movimento, suggerendo, inoltre, un possibile modello di pensiero storico-cronologico anti-lineare.