953 resultados para Laser Scanning confocal microscopy
Resumo:
Übergangsmetallen wie Nickel und Cobalt kommt meist eine große Bedeutung als Cofaktor in Enzymen oder Metallkomplexen im Metabolismus von Lebewesen zu. Da eine sehr geringe Konzentration dieser Übergangsmetalle in einer Zelle für deren Funktionalität ausreicht, ist eine konstante Konzentration der Spurenelemente in einer Zelle angestrebt. Durch meist anthropogene Einflüsse sind Pflanzen und Menschen zunehmend hohen Konzentrationen von Übergangsmetallen ausgesetzt, die in Abhängigkeit von ihrer Spezies, der Konzentration und der Lokalisation unterschiedliche Toxizitäten aufweisen können. Die Speziation von Metallen wurde bisher mittels gängiger Analyseverfahren, wie der ICP-MS und ähnlicher Verfahren, anhand von bulk-Material durchgeführt. Durch die Entwicklung von optischen Sensoren für Metallionen war es möglich, diese Metalle auch in lebenden Zellen mittels Fluoreszenzmikroskopie zu lokalisieren. Ke und Kollegen (2006, 2007) nutzten einen solchen optischen Sensor - Newport Green DCF, um die Aufnahme von Nickel in humane A543 Lungenbronchialepithelzellen nach Inkubation mit dem wasserlöslichen NiCl2 (0,5 mM und 1 mM) sowie den wasserunlöslichen Verbindungen Ni3S2 (0,5 µg/cm2 und 1 µg/cm2) und NiS (2,5 µg/cm2) nachzuweisen und zu lokalisieren und konnten damit eine Akkumulation von Nickel im Zytoplasma und im Zellkern aufzeigen. Dabei war bei wasserlöslichen und wasserunlöslichen Nickelverbindungen Nickel nach 24 h im Zytoplasma und erst nach 48 h im Zellkern zu beobachten.rnrnDa Nickel und Cobalt keine detektierbare Eigenfluoreszenz unter den gegebenen Bedingungen zeigten, wurde für den optischen Nachweis von Nickel und Cobalt mit dem konfokalen Laser-Raster Mikroskop (CLSM) nach der Zugabe der verschiedenen wasserlöslichen und wasserunlöslichen Metallverbindungen NiCl2, NiSO4, Ni3S2 und CoCl2 in einzelnen lebenden humanen Gingiva-Fibroblasten, sowie in Pflanzenzellen in dieser Arbeit ebenfalls der optische Sensor Newport Green DCF genutzt. Korrespondierend zu den Ergebnissen früherer Arbeiten von Ke et al. (2006, 2007), in denen die Nickelaufnahme bei Konzentrationen von >0,5 mM NiCl2 bzw. >0,5 µg/cm2 Ni3S2 gezeigt wurde, wurde Nickel in Fibroblasten in Abhängigkeit von der Spezies mit steigender Metallkonzentration von 100 µM bis 500 µM nach 16 h im Zytoplasma und zunehmend nach 24 h bis 48 h im Zellkern detektiert. Bei der wasserunlöslichen Verbindung Ni3S2 war der Nachweis von Nickel im Zellkern bereits nach 16 h bis 24 h erfolgreich. Zusätzlich wurden weitere Strukturen wie das Endoplasmatische Retikulum, die Mitochondrien und die Nukleoli durch eine starke Fluoreszenz des optischen Sensors bei Colokalisationsexperimenten mit Organell-spezifischen Fluoreszenzfarbstoffen als target für die Nickelbindung vermutet. Die Lokalisation von Cobalt in den Fibroblasten entsprach weitgehend der Lokalisation von Nickel. Im Zellkern war die Cobaltlokalisation jedoch auf die Nukleoli beschränkt. Weiterführende Versuche an humanen Gingiva-Fibroblasten zeigten, dass die Aufnahme der Metalle in die Fibroblasten pH-Wert abhängig war. Niedrige pH-Werte im sauren pH-Bereich verringerten die Aufnahme der Metalle in die Zellen, wobei ein pH-Wert im basischen Bereich keinen bedeutenden Unterschied zum neutralen pH-Bereich aufwies. Im Vergleich zu den Fibroblasten war in Pflanzenzellen zu jedem Zeitpunkt, auch bei geringen Konzentrationen der Metallverbindungen sowie des optischen Sensors, Nickel und Cobalt in den Zellkernen detektierbar. Durch die Eigenschaft der Pflanzenzellen eine Vakuole zu besitzen, war Nickel und Cobalt hauptsächlich in den Vakuolen lokalisiert. Weitere Strukturen wie das Endoplasmatische Retikulum, die Mitochondrien oder auch die Zellwand kamen bei Pflanzenzellen als target in Frage.rnrnDie Fluoreszenz und Lokalisation der Metalle in den Fibroblasten waren unabhängig von der Spezies sehr ähnlich, sodass in den Zellen die Spezies anhand der fluoreszenzmikroskopischen Aufnahmen kaum unterschieden werden konnten. Lambda-Scans in verschiedenen regions of interest (ROI) wurden durchgeführt, um durch die Fluoreszenzspektren Hinweise auf eine charakteristische Beeinflussung der Bindungspartner von Nickel und Cobalt oder dieser Metalle selbst in den Zellen auf den optischen Sensor zu bekommen und diese dadurch identifizieren zu können. Das Ziel der parallelen Detektion bzw. Lokalisation und gleichzeitigen Speziation bestimmter Nickel- und Cobaltpezies in einzelnen lebenden Zellen konnte in dieser Arbeit durch den optischen Sensor Newport Green DCF nicht erreicht werden.
Resumo:
This study evaluated (1) the micromorphology by scanning electron microscopy (SEM) and (2) the adhesive performance by microtensile bond strength (μTBS) of diamond bur-treated dentin compared to Er:YAG laser-treated dentin of human primary teeth. (1) For qualitative SEM evaluation, dentin of 18 second primary molars (n = 3/method) was treated with either diamond bur as a control (group 1a: 40 μm diamond bur only (clinical situation); group 1b: grinding + 40 μm diamond bur) or with Er:YAG laser (group 2a (clinical situation, manufacturer's settings): 200 mJ/25 Hz (5 W) + 100 mJ/35 Hz (3.5 W) laser only; group 2b (experimental setting "high"): grinding + 400 mJ/20 Hz (8 W); group 2c (manufacturer's setting "finishing"): grinding + 100 mJ/35 Hz (3.5 W); group 2d (experimental setting "low"): grinding + 50 mJ/35 Hz (1.75 W)). (2) For evaluation of adhesive performance, 64 second primary molars were divided into four groups and treated as described for group 1b and groups 2b/c/d (n = 16/method), and μTBS of Clearfil SE/Clearfil Majesty Esthetic to dentin was measured. The SEM micrographs were qualitatively analyzed. The μTBS values were compared with a Kruskal-Wallis test. The significance level was set at α = 0.05. SEM micrographs showed the typical micromorphologies with a smear layer for the diamond bur groups and open dentin tubules for all laser-treated groups. However, in group 2d, the laser beam had insufficiently irradiated the dentin area, rendering the underlying ground surface partly visible. There were no statistically significant differences between μTBS values of the four groups (p = 0.394). This suggests that Er:YAG laser treatment of dentin of primary molars provides bond strengths similar to those obtained following diamond bur treatment.
Resumo:
This study aimed at testing how active and inactive enamel caries lesions differ by their degree of resin infiltration, and whether the choice of acid pretreatment plays a crucial role. Four examiners assessed 104 human molars and premolars with noncavitated enamel lesions and classified them as 'active' or 'inactive' using the Nyvad criteria. Forty-five teeth were included in this study after independent unanimous lesion activity assessment. Lesions were cut perpendicularly into 2 halves. Each half lesion was pretreated with either 15% hydrochloric acid or 35% phosphoric acid. The lesions were infiltrated after staining with rhodamine isothiocyanate. Thin sections of 100 µm were prepared and the specimens were bleached with 30% hydrogen peroxide. The specimens were then counterstained with sodium fluorescein, subjected to confocal laser scanning microscopy and analyzed quantitatively. Outcome parameters were maximum and average infiltration depths as well as relative penetration depths and areas. In active lesions no significant difference of percentage maximum penetration depth and percentage average penetration depth between lesions pretreated with hydrochloric or phosphoric acid could be observed. In inactive lesions, however, phosphoric acid pretreatment resulted in significantly lower penetration compared to hydrochloric acid pretreatment. Surface conditioning with hydrochloric acid led to similar infiltration results in active and inactive lesions. Moreover, inactive lesions showed greater variability in all assessed infiltration parameters than did active lesions. In conclusion, caries lesion activity and acid pretreatment both influenced the infiltration. The use of phosphoric acid to increase permeability of the surface layer of active lesions should be further explored.
Resumo:
We describe an angiotensin (Ang) II-containing innervation of the kidney. Cryosections of rat, pig and human kidneys were investigated for the presence of Ang II-containing nerve fibers using a mouse monoclonal antibody against Ang II (4B3). Co-staining was performed with antibodies against synaptophysin, tyrosine 3-hydroxylase, and dopamine beta-hydroxylase to detect catecholaminergic efferent fibers and against calcitonin gene-related peptide to detect sensory fibers. Tagged secondary antibodies and confocal light or laser scanning microscopy were used for immunofluorescence detection. Ang II-containing nerve fibers were densely present in the renal pelvis, the subepithelial layer of the urothelium, the arterial nervous plexus, and the peritubular interstitium of the cortex and outer medulla. They were infrequent in central veins and the renal capsule and absent within glomeruli and the renal papilla. Ang II-positive fibers represented phenotypic subgroups of catecholaminergic postganglionic or sensory fibers with different morphology and intrarenal distribution compared to their Ang II-negative counterparts. The Ang II-positive postganglionic fibers were thicker, produced typically fusiform varicosities and preferentially innervated the outer medulla and periglomerular arterioles. Ang II-negative sensory fibers were highly varicose, prevailing in the pelvis and scarce in the renal periphery compared to the rarely varicose Ang II-positive fibers. Neurons within renal microganglia displayed angiotensinergic, catecholaminergic, or combined phenotypes. Our results suggest that autonomic fibers may be an independent source of intrarenal Ang II acting as a neuropeptide co-transmitter or neuromodulator. The angiotensinergic renal innervation may play a distinct role in the neuronal control of renal sodium reabsorption, vasomotion and renin secretion.
Resumo:
As a part of the respiratory tissue barrier, lung epithelial cells play an important role against the penetration of the body by inhaled particulate foreign materials. In most cell culture models, which are designed to study particle-cell interactions, the cells are immersed in medium. This does not reflect the physiological condition of lung epithelial cells which are exposed to air, separated from it only by a very thin liquid lining layer with a surfactant film at the air-liquid interface. In this study, A549 epithelial cells were grown on microporous membranes in a two chamber system. After the formation of a confluent monolayer the cells were exposed to air. The morphology of the cells and the expression of tight junction proteins were studied with confocal laser scanning and transmission electron microscopy. Air-exposed cells maintained monolayer structure for 2 days, expressed tight junctions and developed transepithelial electrical resistance. Surfactant was produced and released at the apical side of the air-exposed epithelial cells. In order to study particle-cell interactions fluorescent 1 microm polystyrene particles were sprayed over the epithelial surface. After 4 h, 8.8% of particles were found inside the epithelium. This fraction increased to 38% after 24 h. During all observations, particles were always found in the cells but never between them. In this study, we present an in vitro model of the respiratory tract wall consisting of air-exposed lung epithelial cells covered by a liquid lining layer with a surfactant film to study particle-cell interactions.
Resumo:
This in vitro study aimed to assess the speed and caries removal effectiveness of four different new and conventional dentine excavation methods. Eighty deciduous molars were assigned to four groups. Teeth were sectioned longitudinally through the lesion centre. Images of one half per tooth were captured by light microscope and confocal laser scanning microscopy (CLSM) to assess the caries extension. The halves were then reassembled and caries removed using round carbide bur (group 1), Er:YAG laser (group 2), hand excavator (group 3) and a polymer bur (group 4). The time needed for the whole excavation in each tooth was registered. After excavation, the halves were photographed by light microscope. Caries extension obtained from CLSM images were superimposed on the post-excavation images, allowing comparison between caries extension and removal. The regions where caries and preparation limits coincided, as well as the areas of over- and underpreparation, were measured. Steel bur was the fastest method, followed by the polymer bur, hand excavator and laser. Steel bur exhibited also the largest overpreparation area, followed by laser, hand excavator and polymer bur. The largest underpreparation area was found using polymer bur, followed by laser, hand excavator and steel bur. Hand excavator presented the longest coincidence line, followed by polymer and steel burs and laser. Overall, hand excavator seemed to be the most suitable method for carious dentine excavation in deciduous teeth, combining good excavation time with effective caries removal.
Resumo:
PURPOSE: To evaluate the effect of CO2 laser treatment through topically applied amine fluoride solution on demineralised enamel. MATERIALS AND METHODS: Sixty extracted human molar crowns were selected and cut longitudinally into half. One half was subjected to a 10-day pH-cycling procedure to create caries-like lesions, whereas the other was left non-demineralised. The following treatments were randomly assigned (one treatment per tooth, on respective non-demineralised and demineralised matched specimens): exposure to a 1% amine fluoride solution for 15 s without irradiation (group I), irradiation for 15 s with a continuous-wave CO2 laser (group II), or laser-treatment for 15 s through the amine fluoride solution applied immediately beforehand (group III). Fluoride uptake (n = 30) and acid resistance (n = 30) were determined after treatment. Enamel surface alterations after laser irradiation were monitored using scanning electron microscopy. RESULTS: In groups I and III, an increased fluoride uptake was detected (p < or = 0.05). Laser irradiation through topical fluoride resulted in an increased acid resistance of sound and demineralised enamel specimens in deeper layers (p < or = 0.05). In addition, less surface alterations were observed in SEM examination of specimens irradiated through the amine fluoride solution compared with counterparts treated with laser only. CONCLUSIONS: CO2 laser light application through an amine fluoride solution may be instrumental in enhancing acid resistance of sound and demineralised enamel.
Resumo:
BACKGROUND: Early exposure of infants and long-term immunity suggest that colonization with Moraxella catarrhalis is more frequent than is determined by routine culture. We characterized a reservoir of M. catarrhalis in pharyngeal lymphoid tissue. METHODS: Tissue from 40 patients (median age, 7.1 years) undergoing elective tonsillectomy and/or adenoidectomy was analyzed for the presence of M. catarrhalis by culture, real-time DNA and RNA polymerase chain reaction (PCR), immunohistochemical analysis (IHC), and fluorescent in situ hybridization (FISH). Histologic sections were double stained for M. catarrhalis and immune cell markers, to characterize the tissue distribution of the organism. Intracellular bacteria were identified using confocal laser scanning microscopy (CLSM). RESULTS: Twenty-nine (91%) of 32 adenoids and 17 (85%) of 20 tonsils were colonized with M. catarrhalis. Detection rates for culture, DNA PCR, RNA PCR, IHC, and FISH were 7 (13%) of 52, 10 (19%) of 52, 21 (41%) of 51, 30 (61%) of 49, and 42 (88%) of 48, respectively (P<.001). Histologic analysis identified M. catarrhalis in crypts, intraepithelially, subepithelially, and (using CLSM) intracellularly. M. catarrhalis colocalized with macrophages and B cells in lymphoid follicles. CONCLUSIONS: Colonization by M. catarrhalis is more frequent than is determined by surface culture, because the organism resides both within and beneath the epithelium and invades host cells.
Resumo:
In contrast to the current belief that angiotensin II (Ang II) interacts with the sympathetic nervous system only as a circulating hormone, we document here the existence of endogenous Ang II in the neurons of rat and human sympathetic coeliac ganglia and their angiotensinergic innervation with mesenteric resistance blood vessels. Angiotensinogen - and angiotensin converting enzyme-mRNA were detected by using quantitative real time polymerase chain reaction in total RNA extracts of rat coeliac ganglia, while renin mRNA was untraceable. Cathepsin D, a protease responsible for cleavage beneath other substrates also angiotensinogen to angiotensin I, was successfully detected in rat coeliac ganglia indicating the possibility of existence of alternative pathways. Angiotensinogen mRNA was also detected by in situ hybridization in the cytoplasm of neurons of rat coeliac ganglia. Immunoreactivity for Ang II was demonstrated in rat and human coeliac ganglia as well as with mesenteric resistance blood vessels. By using confocal laser scanning microscopy we were able to demonstrate the presence of angiotensinergic synapses en passant along side of vascular smooth muscle cells. Our findings indicate that Ang II is synthesized inside the neurons of sympathetic coeliac ganglia and may act as an endogenous neurotransmitter locally with the mesenteric resistance blood vessels.
Resumo:
The study conducted in a bacterial-based in vitro caries model aimed to determine whether typical inner secondary caries lesions can be detected at cavity walls of restorations with selected gap widths when the development of outer lesions is inhibited. Sixty bovine tooth specimens were randomly assigned to the following groups: test group 50 (TG50; gap, 50 microm), test group 100 (TG100; gap, 100 microm), test group 250 (TG250; gap, 250 microm) and a control group (CG; gap, 250 microm). The outer tooth surface of the test group specimens was covered with an acid-resistant varnish to inhibit the development of an outer caries lesion. After incubation in the caries model, the area of demineralization at the cavity wall was determined by confocal laser scanning microscopy. All test group specimens demonstrated only wall lesions. The CG specimens developed outer and wall lesions. The TG250 specimens showed significantly less wall lesion area compared to the CG (p < 0.05). In the test groups, a statistically significant increase (p < 0.05) in lesion area could be detected in enamel between TG50 and TG250 and in dentine between TG50 and TG100. In conclusion, the inner wall lesions of secondary caries can develop without the presence of outer lesions and therefore can be regarded as an entity on their own. The extent of independently developed wall lesions increased with gap width in the present setting.
Resumo:
Background Airborne particles entering the respiratory tract may interact with the apical plasma membrane (APM) of epithelial cells and enter them. Differences in the entering mechanisms of fine (between 0.1 μm and 2.5 μm) and ultrafine ( ≤ 0.1 μm) particles may be associated with different effects on the APM. Therefore, we studied particle-induced changes in APM surface area in relation to applied and intracellular particle size, surface and number. Methods Human pulmonary epithelial cells (A549 cell line) were incubated with various concentrations of different sized fluorescent polystyrene spheres without surface charge (∅ fine – 1.062 μm, ultrafine – 0.041 μm) by submersed exposure for 24 h. APM surface area of A549 cells was estimated by design-based stereology and transmission electron microscopy. Intracellular particles were visualized and quantified by confocal laser scanning microscopy. Results Particle exposure induced an increase in APM surface area compared to negative control (p < 0.01) at the same surface area concentration of fine and ultrafine particles a finding not observed at low particle concentrations. Ultrafine particle entering was less pronounced than fine particle entering into epithelial cells, however, at the same particle surface area dose, the number of intracellular ultrafine particles was higher than that of fine particles. The number of intracellular particles showed a stronger increase for fine than for ultrafine particles at rising particle concentrations. Conclusion This study demonstrates a particle-induced enlargement of the APM surface area of a pulmonary epithelial cell line, depending on particle surface area dose. Particle uptake by epithelial cells does not seem to be responsible for this effect. We propose that direct interactions between particle surface area and cell membrane cause the enlargement of the APM.
Resumo:
The activity of moxifloxacin was compared with ofloxacin and doxycycline against bacteria associated with periodontitis within a biofilm (single strain and mixed population) in vitro. Minimal inhibitory concentrations (MICs) and minimal bactericidal concentrations (MBCs) of moxifloxacin, ofloxacin and doxycyline were determined against single strains and mixed populations in a planktonic state. Single-species biofilms of two Porphyromonas gingivalis and two Aggregatibacter actinomycetemcomitans strains and a multi-species biofilm consisting of 12 species were formed for 3 days. The minimal biofilm eradication concentrations (MBECs) were determined after exposing the biofilms to the antibacterials (0.002 - 512 µg ml-1) for 18 h, addition of nutrient broth for 3 days and subsequent subcultivation. Photographs were taken by using confocal laser scanning microscopy and scanning electron microscopy. The MICs and MBCs did not differ between ofloxacin and moxifloxacin against A. actinomycetemcomitans, moxifloxacin was more active than the other tested antibacterials against anaerobes and the mixed population. The single-species biofilms were eradicated by moderate concentrations of the antibacterials, the lowest MBECs were always found for moxifloxacin (2-8 µg ml-1). MBECs against the multi-species biofilms were 128 µg ml-1, >512 µg ml-1 and >512 µg ml-1 for moxifloxacin, ofloxacin and doxycycline, respectively. In summary, moxifloxacin in a topical formulation may have potential as an adjunct to mechanical removal of the biofilms.
Resumo:
Two recent scanning probe techniques were applied to investigate the bipolar twin state of 4-iodo-4′-nitrobiphenyl (INBP) crystals. Solution grown crystals of INBP show typically a morphology which does not express that of a mono-domain polar structure (Fdd2, mm2). From previous X-ray diffraction a twinning volume ratio of [similar]70 : 30 is now explained by two unipolar domains (Flack parameter: 0.075(29)) of opposite orientation of the molecular dipoles, joined by a transition zone showing a width of [similar]140 μm. Scanning pyroelectric microscopy (SPEM) demonstrates a continuous transition of the polarization P from +P into −P across the zone. Application of piezoelectric force microscopy (PFM) confirms unipolar alignment of INBP molecules down to a resolution of [similar]20 nm. A previously proposed real structure for INBP crystals built from lamellae with antiparallel alignment is thus rejected. Anomalous X-ray scattering was used to determine the absolute molecular orientation in the two domains. End faces of the polar axis 2 are thus made up by NO2 groups. Using a previously determined negative pyroelectric coefficient pc leads to a confirmation also by a SPEM analysis. Calculated values for functional group interactions (DA), (AA), (DD) and the stochastic theory of polarity formation allow us to predict that NO2 groups should terminate corresponding faces. Following the present analysis, INBP may represent a first example undergoing dipole reversal upon growth to end up in a bipolar state.
Resumo:
Dicalcium phosphate dihydrate (brushite) and octacalcium phosphate (OCP) crystals are precursors of hydroxyapatite (HAp) for tooth enamel, dentine, and bones formation in living organisms. Here, we introduce a new method for biomimicking brushite and OCP in starch using single and double diffusion techniques. Brushite and OCP crystals were grown by precipitation in starch after gelation. The obtained materials were analyzed by infrared spectroscopy (IR), scanning electron microscopy (SEM), X-ray diffraction (XRD), and confocal laser scanning microscopy (CLSM). IR spectra demonstrate starch inclusion by peak shifts in the 2900–3500 cm–1 region. SEM showed two different morphologies: plate-shaped and needle-like crystals. Calcium phosphate/starch aggregates bear strong resemblance to prismatic brushite kidney stones. This may open up a clue to understand the mechanism of kidney stone formation.
Resumo:
Introduction: Anterior cruciate ligament (ACL) injuries are very common; in Germany incidence of ACL ruptures is estimated at 32 per 100 000 in the general population and in the sports community this rate more than doubles. Current gold standard for anterior cruciate lig- ament repair is reconstruction using an autograft [1]. However, this approach has shown some limitations. A new method has been her- alded by the Knee Team at the Bern University Hospital (Inselspital) and the Sonnenhof clinic called Dynamic Intraligamentary Stabilization (DIS), which keeps ACL remnants in place in order to promote biologi- cal healing and makes use of a dynamic screw system [2]. The aim of this study was to investigate the cytocompatibility of collagen patches in combination with DIS to support regeneration of the ACL. The spe- cific hypothesis we tested was whether MSCs would differentiate towards TCs in co-culture. Materials and methods: Primary Tenocytes (TCs) and human bone marrow derived mesenchymal stem cells (MSCs) were harvested from ACL removed during knee prothesis or from bone marrow aspirations (Ethical Permit 187/10). Cells were seeded on two types of three dimensional carriers currently approved for cartilage repair, Novocart (NC, B. Brown) and Chondro-Gide (CG, Geistlich). These scaffolds comprise collagen structures with interconnecting pores originally developed for seeding of chondrocytes in the case of CG. ~40k cells were seeded on punched zylindrical cores of 8 mm in Ø and cultured on CG or NC patches for up to 7 days. The cells were either cultured as TC only, MSC only or co-cultured in a 1:1 mix on the scaffolds and on both sides of culture inserts (PET, high density pore Ø 0.4 mm, BD, Fal- con) with cell-cell contact. We monitored DNA content, GAG and HOP-content, tracked the cells using DIL and DIO fluorescent dyes (Molecular Probes, Life technologies) and confocal laser scanning and SEM microscopy as well as RT-PCR of tenocyte specific markers (i.e. col 1 and 3, TNC, TNMD, SCXA&B, and markers of dedifferentiation ACAN, col2, MMP3, MMP13). Finally, H&E stain was interpreted on cryosections and SEM images of cells on the scaffold were taken. Results: ThecLSMimagesshowedcellproliferationoverthe7dayson both matrices, however, on CG there were much fewer MSCs attached than on NC. SEM images showed a roundish chondrocyte-like pheno- type of cells on CG whereas on NC the phenotype was more teno- cyte-like (Fig. 1). Gene expression of both, MSC and TC seem to confirm a more favorable environment in 3D for both patches rather than monolayer control.