950 resultados para Intergranular layers
Resumo:
This chapter presents findings on English Language instruction at the lower primary level in the context of policies for curricular innovation at national, school and classroom levels. The focus is on policies which connect national and school levels, and on how they might be interpreted when implemented in multiple schools within Singapore’s educational system. Referring to case studies in two schools and to individual lesson observations in 10 schools, we found much agreement with national policies in terms of curriculum (i.e. lesson content and activity selection),leading to great uniformity in the lessons taught by different teachers in different schools. In addition, we found that schools had an important mediating influence on implementation of national policies. However, adoptions and adaptations of policy innovations at the classroom level were somewhat superficial as they were more related to changes in educational facilities and procedures than in philosophies.
Resumo:
Understanding the origin of the properties of metal-supported metal thin films is important for the rational design of bimetallic catalysts and other applications, but it is generally difficult to separate effects related to strain from those arising from interface interactions. Here we use density functional (DFT) theory to examine the structure and electronic behavior of few-layer palladium films on the rhenium (0001) surface, where there is negligible interfacial strain and therefore other effects can be isolated. Our DFT calculations predict stacking sequences and interlayer separations in excellent agreement with quantitative low-energy electron diffraction experiments. By theoretically simulating the Pd core-level X-ray photoemission spectra (XPS) of the films, we are able to interpret and assign the basic features of both low-resolution and high-resolution XPS measurements. The core levels at the interface shift to more negative energies, rigidly following the shifts in the same direction of the valence d-band center. We demonstrate that the valence band shift at the interface is caused by charge transfer from Re to Pd, which occurs mainly to valence states of hybridized s-p character rather than to the Pd d-band. Since the d-band filling is roughly constant, there is a correlation between the d-band center shift and its bandwidth. The resulting effect of this charge transfer on the valence d-band is thus analogous to the application of a lateral compressive strain on the adlayers. Our analysis suggests that charge transfer should be considered when describing the origin of core and valence band shifts in other metal / metal adlayer systems.
Resumo:
We present new inferences about cloud vertical structures from multidirectionnal measurements in the oxygen A-band. The analysis of collocated data provided by instruments onboard satellite platforms within the A-Train, as well as simulations have shown that for monolayered clouds, the cloud oxygen pressure PO2PO2 derived from the POLDER3 instrument was sensitive to the cloud vertical structure in two ways: First, PO2PO2 is actually close to the pressure of the geometrical middle of cloud and we propose a method to correct it to get the cloud top pressure (CTP), and then to obtain the cloud geometrical extent. Second, for the liquid water clouds, the angular standard deviation σPO2σPO2 of PO2PO2 is correlated with the geometrical extent of cloud layers, which makes possible a second estimation of the cloud geometrical thickness. The determination of the vertical location of cloud layers from passive measurements, eventually completed from other observations, would be useful in many applications for which cloud macrophysical properties are needed
Resumo:
This study analyzes and discusses data taken from oceanic and atmospheric measurements performed simultaneously at the Brazil-Malvinas Confluence (BMC) region in the southwestern Atlantic Ocean. This area is one of the most dynamical frontal regions of the world ocean. Data were collected during four research cruises in the region once a year in consecutive years between 2004 and 2007. Very few studies have addressed the importance of studying the air-sea coupling at the BMC region. Lateral temperature gradients at the study region were as high as 0.3 degrees C km(-1) at the surface and subsurface. In the oceanic boundary layer, the vertical temperature gradient reached 0.08 degrees C m(-1) at 500 m depth. Our results show that the marine atmospheric boundary layer (MABL) at the BMC region is modulated by the strong sea surface temperature (SST) gradients present at the sea surface. The mean MABL structure is thicker over the warmside of the BMC where Brazil Current (BC) waters predominate. The opposite occurs over the coldside of the confluence where waters from the Malvinas (Falkland) Current (MC) are found. The warmside of the confluence presented systematically higher MABL top height compared to the coldside. This type of modulation at the synoptic scale is consistent to what happens in other frontal regions of the world ocean, where the MABL adjusts itself to modifications along the SST gradients. Over warm waters at the BMC region, the MABL static instability and turbulence were increased while winds at the lower portion of the MABL were strong. Over the coldside of the BC/MC front an opposite behavior is found: the MABL is thinner and more stable. Our results suggest that the sea-level pressure (SLP) was also modulated locally, together with static stability vertical mixing mechanism, by the surface condition during all cruises. SST gradients at the BMC region modulate the synoptic atmospheric pressure gradient. Postfrontal and prefrontal conditions produce opposite thermal advections in the MABL that lead to different pressure intensification patterns across the confluence.
Resumo:
We have studied the normal and superconducting transport properties of Bi(1.65)Pb(0.35)Sr(2)Ca(2)Cu(3)O(10+delta) (Bi-2223) ceramic samples. Four samples, from the same batch, were prepared by the solid-state reaction method and pressed uniaxially at different compacting pressures, ranging from 90 to 250 MPa before the last heat treatment. From the temperature dependence of the electrical resistivity, combined with current conduction models for cuprates, we were able to separate contributions arising from both the grain misalignment and microstructural defects. The behavior of the critical current density as a function of temperature at zero applied magnetic field, J (c) (T), was fitted to the relationship J (c) (T)ae(1-T/T (c) ) (n) , with na parts per thousand 2 in all samples. We have also investigated the behavior of the product J (c) rho (sr) , where rho (sr) is the specific resistance of the grain-boundary. The results were interpreted by considering the relation between these parameters and the grain-boundary angle, theta, with increasing the uniaxial compacting pressure. We have found that the above type of mechanical deformation improves the alignment of the grains. Consequently the samples exhibit an enhance in the intergranular properties, resulting in a decrease of the specific resistance of the grain-boundary and an increase in the critical current density.
Resumo:
We performed measurements of electrical resistivity as a function of temperature, rho(T), in polycrystalline samples of YBa(2)Cu(3)O(7-delta) (Y-123) subjected to different uniaxial compacting pressures. We observed by using X-ray diffractometry that samples have a very similar composition. Most of the identified peaks are related to the superconducting Y-123 phase. Also, from the X-ray diffraction patterns performed, in powder and pellet samples, we estimated the Lotgering factor along the (00l) direction, F((00l)). The results indicate that F((00l)) increases from 0.13 to 0.16. From electrical resistivity measurements as a function of temperature, we were able to separate contributions arising from both the grain misalignment and microstructural defects. We found appreciable degradation in the normal-state transport properties of samples with an increase in uniaxial compacting pressure. It seems that this type of behavior is associated with an increase in the influence of microstructural defects at the intergranular level. The experimental results are analyzed in the framework of a current conduction model of granular samples.
Resumo:
The magnetic response of the near-band-edge optical properties is studied in EuTe layers. In several magneto-optical experiments, the absorption and emission are described as well as the related Stokes shift. Specifically, we present the first experimental report of the photoluminescence excitation (PLE) spectrum in Faraday configuration. The PLE spectra shows to be related with the absorption spectra through the observation of resonance between the excitation light and the zero-field band-gap. A new emission line appears at 1.6 eV at a moderate magnetic field in the photoluminescence (PL) spectra. Furthermore, we examine the absorption and PL red-shift induced by the magnetic field in the light of the d-f exchange interaction energy involved in these processes. Whereas the absorption red-shift shows a quadratic dependence on the field, the PL red-shift shows a linear dependence which is explained by spin relaxation of the excited state.
Resumo:
In this work we analyze the spin-polarized charge density distribution in the GeMn diluted ferromagnetic semiconductors (DFS). The calculations are performed within a self-consistent k.p method, in which the exchange correlation effects in the local density approximation, as well as the strain effects due to the lattice mismatch, are taken into account. Our findings show that the extra confinement potential provided by the barriers and the variation of the Mn content in the DFS are responsible for a separation between the different spin charge densities, giving rise to higher mobility spin-polarized currents or high ferromagnetism transition temperatures systems. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
The successful immobilization of enzymes such as horseradish peroxidase (HRP) in solid films is essential for applications in sensors and for fundamental studies aimed at identifying possible biotechnological devices. In this study we show that HRP can be immobilized in alternated layers with chitosan as the template material. The activity of HRP in HRP/chitosan films was preserved for several weeks, and could be detected optically upon monitoring the reaction with pyrogallol. The morphology of the film displayed stripes that disappeared after reaction with pyrogallol. Though the activity in the HRP/chitosan film was lower than in a homogeneous solution or in an LB film investigated earlier, the response was linear for a considerable period of time, which may be advantageous for sensing hydrogen peroxide. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Magneto-capacitance was studied in narrow miniband GaAs/AlGaAs superlattices where quasi-two dimensional electrons revealed the integer quantum Hall effect. The interwell tunneling was shown to reduce the effect of the quantization of the density of states on the capacitance of the superlattices. In such case the minimum of the capacitance observed at the filling factor nu = 2 was attributed to the decrease of the electron compressibility due to the formation of the incompressible quantized Hall phase. In accord with the theory this phase was found strongly inhomogeneous. The incompressible fraction of the quantized Hall phase was demonstrated to rapidly disappear with the increasing temperature. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The influence of the interlayer coupling on formation of the quantized Hall conductor phase at the filling factor v = 2 was studied in the multi-layer GaAs/AlGaAs heterostructures. The disorder broadened Gaussian photoluminescence line due to the localized electrons was found in the quantized Hall phase of the isolated multi-quantum well structure. On the other hand, the quantized Hall phase of the weakly coupled multi-layers emitted an unexpected asymmetrical line similar to that one observed in the metallic electron systems. We demonstrated that the observed asymmetry is caused by a partial population of the extended electron states formed in the quantized Hall conductor phase due to the interlayer percolation. A sharp decrease of the single-particle scattering time associated with these extended states was observed at the filling factor v = 2. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
This paper describes the preparation of a biomimetic Langmuir-Blodgett film of tyrosinase incorporated in a lipidic layer and the use of lutetium bisphthalocyanine as an electron mediator for the voltammetric detection of phenol derivatives, which include one monophenol (vanillic acid), two diphenols (catechol and caffeic acid) and two triphenols (gallic acid and pyrogallol). The first redox process of the voltammetric responses is associated with the reduction of the enzymatically formed o-quinone and is favoured by the lutetium bisphthalocyanine because significant signal amplification is observed, while the second is associated with the electrochemical oxidation of the antioxidant and occurs at lower potentials in the presence of an electron mediator. The biosensor shows low detection limit (1.98 x 10(-6)-27.49 x 10(-6) M), good reproducibility, and high affinity to antioxidants (Km in the range of 62.31-144.87 mu M). The excellent functionality of the enzyme obtained using a biomimetic immobilisation method, the selectivity afforded by enzyme catalysis, the signal enhancement caused by the lutetium bisphthalocyanine mediator and the increased selectivity of the curves due to the occurrence of two redox processes make these sensors exceptionally suitable for the detection of phenolic compounds. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Ellipsometry was used to investigate the influence of ionic strength (I) and pH on the adsorption of bovine serum albumin (BSA) or beta-lactoglobulin (BLG) onto preabsorbed layers of two polycations: poly(diallyldimethylammonium chloride) (PDADMAC) or poly(4-vinylpyridine bromide) quaternized with linear aliphatic chains of two (QPVP-C2) or five (QPVP-C5) carbons. Comparisons among results for the three polycations reveal hydrophobic interactions, while comparisons between BSA and BLG-proteins of very similar isoelectric points (pI)-indicate the importance of protein charge anisotropy. At pH close to pI, the ionic strength dependence of the adsorbed amount of protein (Gamma) displayed maxima in the range 10 < I < 25 mM corresponding to Debye lengths close to the protein radii. Visualization of protein charge by Delphi suggested that these ionic strength conditions corresponded to suppression of long-range repulsion between polycations and protein positive domains, without diminution of short-range attraction between polycation segments and locally negative protein domains, in a manner similar to the behavior of PE-protein complexes in solution.(1-4) This description was consistent with the disappearance of the maxima at pH either above or below pI. In the former case, Gamma values decrease exponentially with I(1/2), due to screening of attractions, while in the latter case adsorption of both proteins decreased at low I due to strong repulsion. Close to or below pI both proteins adsorbed more strongly onto QPVP-C5 than onto QPVP-C2 or PDADMAC due to hydrophobic interactions with the longer alkyl group. Above pI, the adsorption was more pronounced with PDADMAC because these chains may assume more loosely bound layers due to lower linear charge density.
Resumo:
Charge recombination at the conductor substrate/electrolyte interface has been prevented by using efficient blocking layers of TiO(2) compact films in dye-sensitized solar cell photoanodes. Compact blocking layers have been deposited before the mesoporous TiO(2) film by the layer-by-layer technique using titania nanoparticles as cations and sodium sulfonated polystyrene, PSS, as a polyanion. The TiO(2)/PSS blocking layer in a DSC prevents the physical contact of FTO and the electrolyte and leads to a 28% increase in the cell`s overall conversion efficiency, from 5.7% to 7.3%. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The time dependence of the concentration of CO2 in an electrochemical thin layer cavity is studied with Fourier transform infrared spectroscopy (FTIR) in order to evaluate the extent to which the thin layer cavity is diffusionally decoupled from the surrounding bulk electrolyte. For the model system of CO on Pt(111) in 0.1 M HClO4, it is found that the concentration of CO2, formed by electro-oxidation of CO, equilibrates rapidly with the surrounding bulk electrolyte. This rapid equilibration indicates that there is diffusion out of the thin layer, even on the short time scales of typical infrared experiments (1-3 min). However, since the measured CO2 absorbance intensity as a function of time is reproducible to within 10%, a new time-dependent method for surface coverage calibration using solution-phase species is proposed.