871 resultados para Indivisible objects allocation
Resumo:
n the last few years, the vision of our connected and intelligent information society has evolved to embrace novel technological and research trends. The diffusion of ubiquitous mobile connectivity and advanced handheld portable devices, amplified the importance of the Internet as the communication backbone for the fruition of services and data. The diffusion of mobile and pervasive computing devices, featuring advanced sensing technologies and processing capabilities, triggered the adoption of innovative interaction paradigms: touch responsive surfaces, tangible interfaces and gesture or voice recognition are finally entering our homes and workplaces. We are experiencing the proliferation of smart objects and sensor networks, embedded in our daily living and interconnected through the Internet. This ubiquitous network of always available interconnected devices is enabling new applications and services, ranging from enhancements to home and office environments, to remote healthcare assistance and the birth of a smart environment. This work will present some evolutions in the hardware and software development of embedded systems and sensor networks. Different hardware solutions will be introduced, ranging from smart objects for interaction to advanced inertial sensor nodes for motion tracking, focusing on system-level design. They will be accompanied by the study of innovative data processing algorithms developed and optimized to run on-board of the embedded devices. Gesture recognition, orientation estimation and data reconstruction techniques for sensor networks will be introduced and implemented, with the goal to maximize the tradeoff between performance and energy efficiency. Experimental results will provide an evaluation of the accuracy of the presented methods and validate the efficiency of the proposed embedded systems.
Resumo:
Classic group recommender systems focus on providing suggestions for a fixed group of people. Our work tries to give an inside look at design- ing a new recommender system that is capable of making suggestions for a sequence of activities, dividing people in subgroups, in order to boost over- all group satisfaction. However, this idea increases problem complexity in more dimensions and creates great challenge to the algorithm’s performance. To understand the e↵ectiveness, due to the enhanced complexity and pre- cise problem solving, we implemented an experimental system from data collected from a variety of web services concerning the city of Paris. The sys- tem recommends activities to a group of users from two di↵erent approaches: Local Search and Constraint Programming. The general results show that the number of subgroups can significantly influence the Constraint Program- ming Approaches’s computational time and e�cacy. Generally, Local Search can find results much quicker than Constraint Programming. Over a lengthy period of time, Local Search performs better than Constraint Programming, with similar final results.
Resumo:
La tesi affronta il problema di Finanza Matematica dell'asset allocation strategica che consiste nel processo di ripartizione ottimale delle risorse tra diverse attività finanziarie presenti su un mercato. Sulla base della teoria di Harry Markowitz, attraverso passaggi matematici rigorosi si costruisce un portafoglio che risponde a dei requisiti di efficienza in termini di rapporto rischio-rendimento. Vengono inoltre forniti esempi di applicazione elaborati attraverso il software Mathematica.
Resumo:
In this thesis the results of the multifrequency VLBA observations of the GPS 1944+5448 and the HFP J0111+3906 are presented. They are compact objects smaller than about 100 pc, completely embedded in the host galaxy. The availability of multi-epoch VLBI observations spanning more than 10 years, allowed us to compute the hot spot advance speed in order to obtain the kinematic age of both sources. Both radio sources are young, in agreement with the idea that they are in an early evolutionary stage. The spectral analysis of each source component, such as the lobes, the hot spots, the core and the jets, making a comparison with the theoretical ones is described. In addition the physical parameters derived from VLBA images as the magnetic field, the luminosity, the energy and the ambient medium density of both sources are discussed.
Resumo:
High Performance Computing e una tecnologia usata dai cluster computazionali per creare sistemi di elaborazione che sono in grado di fornire servizi molto piu potenti rispetto ai computer tradizionali. Di conseguenza la tecnologia HPC e diventata un fattore determinante nella competizione industriale e nella ricerca. I sistemi HPC continuano a crescere in termini di nodi e core. Le previsioni indicano che il numero dei nodi arrivera a un milione a breve. Questo tipo di architettura presenta anche dei costi molto alti in termini del consumo delle risorse, che diventano insostenibili per il mercato industriale. Un scheduler centralizzato non e in grado di gestire un numero di risorse cosi alto, mantenendo un tempo di risposta ragionevole. In questa tesi viene presentato un modello di scheduling distribuito che si basa sulla programmazione a vincoli e che modella il problema dello scheduling grazie a una serie di vincoli temporali e vincoli sulle risorse che devono essere soddisfatti. Lo scheduler cerca di ottimizzare le performance delle risorse e tende ad avvicinarsi a un profilo di consumo desiderato, considerato ottimale. Vengono analizzati vari modelli diversi e ognuno di questi viene testato in vari ambienti.
Resumo:
To study the effect of a nonlinear noise filter on the detection of simulated endoleaks in a phantom with 80- and 100-kVp multidetector computed tomographic (CT) angiography.
Resumo:
Software must be constantly adapted due to evolving domain knowledge and unanticipated requirements changes. To adapt a system at run-time we need to reflect on its structure and its behavior. Object-oriented languages introduced reflection to deal with this issue, however, no reflective approach up to now has tried to provide a unified solution to both structural and behavioral reflection. This paper describes Albedo, a unified approach to structural and behavioral reflection. Albedo is a model of fined-grained unanticipated dynamic structural and behavioral adaptation. Instead of providing reflective capabilities as an external mechanism we integrate them deeply in the environment. We show how explicit meta-objects allow us to provide a range of reflective features and thereby evolve both application models and environments at run-time.