979 resultados para Independent mobility
Resumo:
GaN epilayers were grown on (0001) sapphire substrates by NH3-MBE and RF-MBE (radio frequency plasma). The polarities of the epilayers were investigated by in-situ RHEED, chemical solution etching and AFM surface examination. By using a RF-MBE grown GaN layer as template to deposit GaN epilayer by NH3-MBE method, we found that not only Ga-polarity GaN films were repeatedly obtained, but also the electron mobility of these Ga-polarity films was significantly improved with a best value of 290 cm(2)/V.s at room temperature. Experimental results show it is an easy and stable way for growth of high quality Ga-polarity GaN films.
Resumo:
The rule of current change was studied during capillary electrophoresis (CE) separation process while the conductivity of the sample solution was different from that of the buffer. Using a quadratic spline wavelet of compact support, the wavelet transforms (WTs) of capillary electrophoretic currents were performed. The time corresponding to the maximum of WT coefficients was chosen as the time of current inflection to calculate electroosmotic mobility. The proposed method was suitable for different CE modes, including capillary zone electrophoresis, nonaqueous CE and micellar electrokinctic chromatography. Compared with the neutral marker method, the relative errors of the developed method for the determination of electroosmotic mobility were all below 2.5%. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
A mode of capillary electrochromatography for separation of ionic compounds driven by electrophoretic mobility on a neutrally hydrophobic monolithic column was developed. The monolithic column was prepared from the in situ copolymerization of lauryl methacrylate and ethylene dimethacrylate to form a C-12 hydrophobic stationary phase. It was found that EOF in this hydrophobic monolithic column was very poor, even the pH value of mobile phase at 8.0. The peptides at acidic buffer were separated on the basis of their differences in electrophoretic mobility and hydrophobic interaction with the stationary phase; therefore, different separation selectivity can be obtained in CEC from that in capillary zone electrophoresis (CZE). Separation of peptides has been realized with high column efficiency (up to 150 000 plates/meter) and good reproducibility (migration time with RSD < 0.5%), and all of the peptides, including some basic peptides, showed good peak symmetry. Effects of the mobile phase compositions on the retention of peptides at low pH have been investigated in a hydrophobic capillary monolithic column. The significant difference in selectivity of peptides in CZE and CEC has been observed. Some peptide isomers that cannot be separated by CZE have been successfully separated on the capillary monolithic column in this mode with the same buffer used.
Resumo:
Air-stable n-type field effect transistors were fabricated with an axially oxygen substituted metal phthalocyanine, tin (IV) phthalocyanine oxide (SnOPc), as active layers. The SnOPc thin films showed highly crystallinity on modified dielectric layer, and the electron field-effect mobility reached 0.44 cm(2) V-1 s(-1). After storage in air for 32 days, the mobility and on/off ratio did not obviously change. The above results also indicated that it is an effective approach of seeking n-type semiconductor by incorporating the appropriate metal connected with electron-withdrawing group into pi-pi conjugated system.
Resumo:
Phthalocyanato tin(IV) dichloride, an axially dichloriniated MPc, is an air-stable high performance n-type organic semiconductor with a field-effect electron mobility of up to 0.30 cm(2) V-1 s(-1). This high mobility together with good device stability and commercial availability makes it a most suitable n-type material for future organic thin-film transistor applications.
Resumo:
A series of donor-acceptor low-bandgap conjugated polymers, i.e., PTnBT (n = 2-6), composed of alternating oligothiophene (OTh) and 2,1,3-benzothiadiazole (BT) units were synthesized by Stille cross-coupling polymerization. The number of thiophene rings in OTh units, that is n, was tuned from 2 to 6. All these polymers display two absorption bands in both solutions and films with absorption maxima depending on n. From solution to film, absorption spectra of the polymers exhibit a noticeable red shift. Both high- and low-energy absorption bands or P'F5BT and PT6BT films locate in the visible region, which are at 468 and 662 nm for PT5BT and 494 and 657 nm for PT6BT.
Resumo:
The organic films of vanadyl-phthalocyanine (VOPc) compounds showed weak epitaxy growth (WEG) behavior on thin ordered para-sexiphenyl (p-6P) layer with high substrate temperature. The WEG of VOPc molecules standing up on the p-6P layer leaded to high in-plane orientation and their layer-by-layer growth behavior. In consequence, high quality VOPc films were obtained, which were consisted of lamellar crystals. Organic field-effect transistors with VOPc/p-6P films as active layers realized high mobility of above 1 cm(2)/V s. This result indicated that nonplanar compounds can obtain a device performance better than planar compounds, therefore, it may provide a rule to find disklike organic semiconductor materials.
Resumo:
Thin films of phthalocyanine compounds show weak epitaxial growth on a monodomain film of a rod-like molecule (see figure). The resulting organic electronic devices exhibit high charge carrier mobilities close to those of the single-crystal devices.
Resumo:
Hole mobility in a copper-phthalocyanine (CuPc)-based top-contact transistor has been studied with various organic layer thicknesses. It is found that the transistor performance depends on the thickness of the CuPc layer, and the mobility increases with the increase in the CuPc layer and saturated at the thickness of 6 ML. The upper layers do not actively contribute to the carrier transport in the organic films. The morphology of the organic layer grown on the bare SiO2/Si substrate is also presented. The analysis of spatial correlations shows that the CuPc films grow on the SiO2 according to the mixed-layer mode.
Resumo:
Pentacene thin-film transistors have been obtained using polymethyl-methacrylate-co-glyciclyl-methacrylate (PNIMA-GMA) as the gate dielectric. The optimum active layer thickness in thin-film transistors (OTFTs) was investigated. The present devices show a wide operation voltage range. The on/off current ratio is as high as 10(5). In linear region (V-DS = -2V), the field-effect mobility of device increases with the increase in gate field at low-voltage region (V-G < - 20 V), and a mobility of 0.33 cm(2)/Vs can be obtained when V-G > 20 V. In saturation region, the mobility increases linearly with the gate field, and a high mobility of 1.14 cm(2)/Vs can be obtained at V-G = -95V. The influence of voltage on mobility of device was investigated.