932 resultados para Heat Solar Energy


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Once the seed has germinated, the plant is forced to face all the environmental changes in its habitat. In order to survive, plants have evolved a number of different acclimation systems. The primary reaction behind plant growth and development is photosynthesis. Photosynthesis captures solar energy and converts it into chemical form. Photosynthesis in turn functions under the control of environmental cues, but is also affected by the growth, development, and metabolic state of a plant. The availability of solar energy fluctuates continuously, requiring non-stop adjustment of photosynthetic efficiency in order to maintain the balance between photosynthesis and the requirements and restrictions of plant metabolism. Tight regulation is required, not only to provide sufficient energy supply but also to prevent the damage caused by excess energy. The very first reaction of photosynthesis is splitting of water into the form of oxygen, hydrogen, and electrons. This most fundamental reaction of life is run by photosystem II (PSII), and the energy required for the reaction is collected by the light harvesting complex II (LHCII). Several proteins of the PSII-LHCII complex are reversibly phosphorylated according to the energy balance between photosynthesis and metabolism. Thylakoid protein phosphorylation has been under extensive investigation for over 30 years, yet the physiological role of phosphorylation remains elusive. Recently, the kinases behind the phosphorylation of PSII-LHCII proteins (STN7 and STN8) were identified and the knockout mutants of these kinases became available, providing powerful tools to elucidate the physiological role of PSII-LHCII phosphorylation. In my work I have used the stn7 and stn8 mutants in order to clarify the role of PSII-LHCII phosphorylation in regulation and protection of the photosynthetic machinery according to environmental cues. I show that STN7- dependent PSII-LHCII protein phosphorylation is required to balance the excitation energy distribution between PSII and PSI especially under low light intensities when the excitation energy transfer from LHC to PSII and PSI is efficient. This mechanism differs from traditional light quality-induced “state 1” – “state 2” transition and ensures fluent electron transfer from PSII to PSI under low light, yet having highest physiological relevance under fluctuating light intensity. STN8-dependent phosphorylation of PSII proteins, in turn, is required for fluent turn-over of photodamaged PSII complexes and has the highest importance upon prolonged exposure of the photosynthetic apparatus to excess light.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this study, photoelectrochemical solar cells based on bismuth tungstate electrodes were evaluated. Bi2WO6 was synthesized by a hydrothermal method and characterized by scanning electron microscopy, UV-Vis reflectance spectroscopy, and X-ray powder diffraction. For comparison, solar cells based on TiO2 semiconductor electrodes were evaluated. Photoelectrochemical response of Grätzel-type solar cells based on these semiconductors and their corresponding sensitization with two inexpensive phthalocyanines dyes were determined. Bi2WO6-based solar cells presented higher values of photocurrent and efficiency than those obtained with TiO2 electrodes, even without sensitization. These results portray solar cells based on Bi2WO6 as promising devices for solar energy conversion owing to lower cost of production and ease of acquisition.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Life on earth depends on the absorption and conversion of solar energy into chemical bonds, i.e. photosynthesis. In this process, sun light is employed to oxidize water into oxygen and reducing equivalents used to produce fuels. In artificial photosynthesis, the goal is to develop relatively simple systems able to mimic photosynthetic organisms and promote solar-to-chemical conversion. The aim of the present review was to describe recent advances in the application of coordination compounds as catalysts in some key reactions for artificial photosynthesis, such as water splitting and CO2 reduction.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Photosynthetic reactions are divided in two parts: light-driven electron transfer reactions and carbon fixation reactions. Electron transfer reactions capture solar energy and split water molecules to form reducing energy (NADPH) and energy-carrying molecules (ATP). These end-products are used for fixation of inorganic carbon dioxide into organic sugar molecules. Ferredoxin-NADP+ oxidoreductase (FNR) is an enzyme that acts at the branch point between the electron transfer reactions and reductive metabolism by catalyzing reduction of NADP+ at the last step of the electron transfer chain. In this thesis, two isoforms of FNR from A rabidopsis thaliana, FNR1 and FNR2, were characterized using the reverse genetics approach. The fnr1 and fnr2 mutant plants resembled each other in many respects. Downregulation of photosynthesis protected the single fnr mutant plants from excess formation of reactive oxygen species (ROS), even without significant upregulation of antioxidative mechanisms. Adverse growth conditions, however, resulted in phenotypic differences between fnr1 and fnr2. While fnr2 plants showed downregulation of photosynthetic complexes and upregulation of antioxidative mechanisms under low-temperature growth conditions, fnr1 plants had the wild-type phenotype, indicating that FNR2 may have a specific role in redistribution of electrons under unfavorable conditions. The heterozygotic double mutant (fnr1xfnr2) was severely devoid of chloroplastic FNR, which clearly restricted photosynthesis. The fnr1xfnr2 plants used several photoprotective mechanisms to avoid oxidative stress. In wild-type chloroplasts, both FNR isoforms were found from the stroma, the thylakoid membrane, and the inner envelope membrane. In the absence of the FNR1 isoform, FNR2 was found only in the stroma, suggesting that FNR1 and FNR2 form a dimer, by which FNR1 anchors FNR2 to the thylakoid membrane. Structural modeling predicted formation of an FNR dimer in complex with ferredoxin. In this thesis work, Tic62 was found to be the main protein that binds FNR to the thylakoid membrane, where Tic62 and FNR formed high molecular weight complexes. The formation of such complexes was shown to be regulated by the redox state of the chloroplast. The accumulation of Tic62-FNR complexes in darkness and dissociation of complexes from the membranes in light provide evidence that the complexes may have roles unrelated to photosynthesis. This and the high viability of fnr1 mutant plants lacking thylakoid-bound FNR indicate that the stromal pool of FNR is photosynthetically active.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Aurinkoenergia on yksi monista uusiutuvan energian muodoista, joiden suosio on viimeisten vuosien aikana kasvanut fossiilisten polttoaineiden kallistumisen sekä ilmaston lämpenemisen vuoksi. Auringon säteilyn energiaa voidaan muuttaa sähköenergiaksi mm. aurinkopaneeleiden avulla. Aurinkopaneeleihin liitetään usein vaihtosuuntaaja, jolla tuotettu teho voidaan muokata sähköverkkoon tai kotitalouden sähköjärjestelmään sopivaksi. Tässä työssä on esitelty aurinkopaneelilla tuotettavan sähköenergian perusperiaatteet sekä tehoa tuottavan järjestelmän reunaehdot. Tutkimuksessa on perehdytty keskeisiin, aurinkopaneeleihin liitettäville vaihtosuuntaajille laadittuihin standardeihin, hyötysuhteen mittaamisen sekä sähkön laadun näkökulmista. Selvityksen avulla järjestelmän hyötysuhteen sekä lähtötehon laadun määrittämiseksi voidaan laatia standardien mukainen mittaussuunnitelma vaihtosuuntaajan nimellistehosta riippumatta. Standardien avulla on laadittu mittaussuunnitelma Global Inversonne, 100 kW - verkkovaihtosuuntaajayksikölle. Suunnitelman mukaisissa mittauksissa on tutkittu yksikön muunnoshyötysuhdetta sekä lähtöjännitteen- ja virran laatua. Lisäksi työssä on analysoitu mittaustulosten mittausepävarmuuksia ja niitä aiheuttavia tekijöitä.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Tämä diplomityö on tehty East- West Trade & Consulting Oy:lle sekä Lappeenrannan Energia Oy:lle. Työssä tavoitteena oli selvittää energiatehokkuutta parantavien energiaratkaisujen vaikutuksia kerrostalon asumiskustannuksiin. Ratkaisuvaihtoehtoja vertailtiin myös hiilidioksidipäästöjen osalta. Laskelmat suoritettiin Lappeenrantaan suunnitellulle asuinkerrostalolle. Heinäkuun alussa 2012 voimaan tulevissa Suomen rakentamismääräyksissä on määritetty uudiskerrostalon kokonaisenergiankulutukselle raja-arvo, jota ei saa ylittää. Työssä selvitettiin, millaiset energiaratkaisut sekä täyttävät viranomaisvaatimukset että ovat kyseisessä kerrostalossa toteuttamiskelpoisia. Lisäksi määritettiin järjestelmäratkaisuilla, kuten aurinkosähköjärjestelmällä, mahdollisesti saavutettavat säästöt energiakustannuksissa verrattuna kaukolämpö- ja sähköjärjestelmään. Myös järjestelmäratkaisujen takaisinmaksuajat määritettiin. Työn tuloksista havaitaan, että valitsemalla aurinkoenergiaa ja maalämpöä uusiutuvaksi omavaraisenergiaksi kaukolämmön ja verkkosähkön rinnalle voidaan asumiskustannuksia ja CO2- päästöjä pienentää. Tulevaisuudessa energianhinnan nousu, teknologian kehitys ja teknologian investointikustannusten pieneneminen voivat lisätä aurinkoenergiajärjestelmien suosiota.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

It was evaluated the annual evolution of global, direct and diffuse components of incident solar radiation on tilted surfaces to 12.85, 22.85 and 32.85º, facing north, in Botucatu, state of São Paulo, Brazil. The radiometric fractions were obtained for each component of the radiation in the aforementioned surfaces, through the ratio with the global and top of the atmosphere radiations. Seasonality was evaluated based on monthly averages of daily values. The measures occurred between 04/1998 and 07/2001 at 22.85º; 08/2001 and 02/2003 at 12.85º; and from 03/2003 to 12/2007 at 32.85º, with concomitant measures in the horizontal surface (reference). The levels of global and direct radiation on tilted surfaces were lower in summer and higher in the equinoxes when compared with the horizontal. The diffuse radiation on tilted surfaces was lower in most months, with losses of up to 65%. A trend of increasing differences occurred between horizontal and tilted surfaces with the increase of the angle in all the components and fractions of incident radiation. The annual evolution of rainfall and cloud cover ratio directly affected the atmospheric transmissivity of direct and diffuse components in the region.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The rural electrification is characterized by geographical dispersion of the population, low consumption, high investment by consumers and high cost. Moreover, solar radiation constitutes an inexhaustible source of energy and in its conversion into electricity photovoltaic panels are used. In this study, equations were adjusted to field conditions presented by the manufacturer for current and power of small photovoltaic systems. The mathematical analysis was performed on the photovoltaic rural system I-100 from ISOFOTON, with power 300 Wp, located at the Experimental Farm Lageado of FCA/UNESP. For the development of such equations, the circuitry of photovoltaic cells has been studied to apply iterative numerical methods for the determination of electrical parameters and possible errors in the appropriate equations in the literature to reality. Therefore, a simulation of a photovoltaic panel was proposed through mathematical equations that were adjusted according to the data of local radiation. The results have presented equations that provide real answers to the user and may assist in the design of these systems, once calculated that the maximum power limit ensures a supply of energy generated. This real sizing helps establishing the possible applications of solar energy to the rural producer and informing the real possibilities of generating electricity from the sun.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Tämän tutkimuksen tarkoituksena on tutkia aurinkoenergian hyödyntämistä olemassa olevassa pientalossa. Työssä tarkastellaan aurinkoenergiahankkeen kannattavuutta vaihtoehtoisten lämmitysjärjestelmien osana sekä aurinkosähkön tuotantoa rakennuksen sähköenergian kulutukseen. Lisäksi tarkastellaan, missä määrin aurinkoenergian käyttö vähentää rakennuksen hiilidioksidipäästöjä. Suomi on asettanut itselleen kunnianhimoisen tavoitteen pienentää rakennusten lämmitysenergian kulutusta vuoteen 2050 mennessä. Olemme myös sitoutuneet EU:n uusiutuvan energiankäytön lisäämistavoitteisiin. Normiohjauksen avulla voidaan huolehtia uudisrakennustuotannon energiatehokkuudesta, mutta olemassa olevaan rakennuskantaan on löydettävä muita kustannustehokkaita keinoja vähentää ostoenergian kulutusta ja lisätä uudistuvan energian osuutta energiankulutuksesta. Suomalaiselle asuntorakennuskannalle on tyypillistä pientalovaltaisuus sekä asuntokannan hidas uusiutuvuus. Tämä osaltaan lisää haastetta kansallisten sekä kansainvälisten tavoitteiden saavuttamisessa. Aurinkoenergian hyödyntämisen kannattavuutta tarkastellaan aurinkoenergiahankkeen rajakustannuksen avulla. Laitteen tekninen käyttöikä ja ostoenergian hintakehitys ovat arvioituja. Näin tarkastellen öljylämmitys ja suora sähkölämmitys saavat suurimman hyödyn aurinkoenergiasta, kun sillä tuotetaan lämmintä käyttövettä.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Tämä kandidaatintyö käsittelee lämpöpumppuja, niiden toimintaa ja niiden käytön tulevaisuutta. Työ on rajattu asuintalojen lämmittämiseen ja erityisesti käsitellään erillisiä pientaloja. Työn tavoite on esitellä lämpöpumppujen toimintaperiaate ja tekniikka, eri lämpöpumpputyypit ja niiden lämmönlähteet sekä lämpöpumppujen käyttöä rajoittavia tekijöitä. Lisäksi esitellään Suomen lämmitystapojen jakauma sekä pohditaan siihen tulevia muutoksia. Tilastojen pohjalta tehdään lopulta arvioita lämpöpumppujen käytön tulevaisuuden kehityksestä.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Cyanobacteria are unicellular, non-nitrogen-fixing prokaryotes, which perform photosynthesis similarly as higher plants. The cyanobacterium Synechocystis sp. strain PCC 6803 is used as a model organism in photosynthesis research. My research described herein aims at understanding the function of the photosynthetic machinery and how it responds to changes in the environment. Detailed knowledge of the regulation of photosynthesis in cyanobacteria can be utilized for biotechnological purposes, for example in the harnessing of solar energy for biofuel production. In photosynthesis, iron participates in electron transfer. Here, we focused on iron transport in Synechocystis sp. strain PCC 6803 and particularly on the environmental regulation of the genes encoding the FutA2BC ferric iron transporter, which belongs to the ABC transporter family. A homology model built for the ATP-binding subunit FutC indicates that it has a functional ATPbinding site as well as conserved interactions with the channel-forming subunit FutB in the transporter complex. Polyamines are important for the cell proliferation, differentiation and apoptosis in prokaryotic and eukaryotic cells. In plants, polyamines have special roles in stress response and in plant survival. The polyamine metabolism in cyanobacteria in response to environmental stress is of interest in research on stress tolerance of higher plants. In this thesis, the potd gene encoding an polyamine transporter subunit from Synechocystis sp. strain PCC 6803 was characterized for the first time. A homology model built for PotD protein indicated that it has capability of binding polyamines, with the preference for spermidine. Furthermore, in order to investigate the structural features of the substrate specificity, polyamines were docked into the binding site. Spermidine was positioned very similarly in Synechocystis PotD as in the template structure and had most favorable interactions of the docked polyamines. Based on the homology model, experimental work was conducted, which confirmed the binding preference. Flavodiiron proteins (Flv) are enzymes, which protect the cell against toxicity of oxygen and/or nitric oxide by reduction. In this thesis, we present a novel type of photoprotection mechanism in cyanobacteria by the heterodimer of Flv2/Flv4. The constructed homology model of Flv2/Flv4 suggests a functional heterodimer capable of rapid electron transfer. The unknown protein sll0218, encoded by the flv2-flv4 operon, is assumed to facilitate the interaction of the Flv2/Flv4 heterodimer and energy transfer between the phycobilisome and PSII. Flv2/Flv4 provides an alternative electron transfer pathway and functions as an electron sink in PSII electron transfer.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Welding has a growing role in modern world manufacturing. Welding joints are extensively used from pipes to aerospace industries. Prediction of welding residual stresses and distortions is necessary for accurate evaluation of fillet welds in relation to design and safety conditions. Residual stresses may be beneficial or detrimental, depending whether they are tensile or compressive and the loading. They directly affect the fatigue life of the weld by impacting crack growth rate. Beside theoretical background of residual stresses this study calculates residual stresses and deformations due to localized heating by welding process and subsequent rapid cooling in fillet welds. Validated methods are required for this purpose due to complexity of process, localized heating, temperature dependence of material properties and heat source. In this research both empirical and simulation methods were used for the analysis of welded joints. Finite element simulation has become a popular tool of prediction of welding residual stresses and distortion. Three different cases with and without preload have been modeled during this study. Thermal heat load set is used by calculating heat flux from the given heat input energy. First the linear and then nonlinear material behavior model is modeled for calculation of residual stresses. Experimental work is done to calculate the stresses empirically. The results from both the methods are compared to check their reliability. Residual stresses can have a significant effect on fatigue performance of the welded joints made of high strength steel. Both initial residual stress state and subsequent residual stress relaxation need to be considered for accurate description of fatigue behavior. Tensile residual stresses are detrimental and will reduce the fatigue life and compressive residual stresses will increase it. The residual stresses follow the yield strength of base or filler material and the components made of high strength steel are typically thin, where the role of distortion is emphasizing.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The present study describes the occurrence of lead poisoning in cattle and chickens in Pará, Brazil. In a lot composed of 80 calves from a dairy herd, 10 animals became sick and nine died, but one animal recovered after being removed from the paddock. Upon inspection of this paddock, the presence of truck batteries used to store energy captured by solar panels was found. The clinical signs observed in calves included difficult breathing, nasal discharge, excessive salivation, corneal opacity, pushing of the head against objects and recumbency. The chickens had decreased oviposition and produced eggs with thin or malformed shells. The necropsy findings of the cattle, as well as the histopathological changes observed, were of little significance except for one animal that showed mild astrocytosis histopathology in the cerebral cortex. In one of the chickens, renal histopathology showed mild multifocal acute tubular necrosis. The mean lead concentrations in the livers and kidneys of the cattle were 93.91mg/kg and 209.76mg/kg, respectively, and the mean concentration detected in chicken livers was 105.02mg/kg. It was concluded that the source of lead poisoning in these calves and chickens were the truck battery plates, which were within reach of the animals.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This work describes the methodology, basic procedures and instrumental employed by the Solar Energy Laboratory at Universidade Federal do Rio Grande do Sul for the determination of current-voltage characteristic curves of photovoltaic modules. According to this methodology, I-V characteristic curves were acquired for several modules under diverse conditions. The main electrical parameters were determined and the temperature and irradiance influence on photovoltaic modules performance was quantified. It was observed that most of the tested modules presented output power values considerably lower than those specified by the manufacturers. The described hardware allows the testing of modules with open-circuit voltage up to 50 V and short-circuit current up to 8 A.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Cyanobacteria are the only prokaryotic organisms performing oxygenic photosynthesis. They comprise a diverse and versatile group of organisms in aquatic and terrestrial environments. Increasing genomic and proteomic data launches wide possibilities for their employment in various biotechnical applications. For example, cyanobacteria can use solar energy to produce H2. There are three different enzymes that are directly involved in cyanobacterial H2 metabolism: nitrogenase (nif) which produces hydrogen as a byproduct in nitrogen fixation; bidirectional hydrogenase (hox) which functions both in uptake and in production of H2; and uptake hydrogenase (hup) which recycles the H2 produced by nitrogenase back for the utilization of the cell. Cyanobacterial strains from University of Helsinki Cyanobacteria Collection (UHCC), isolated from the Baltic Sea and Finnish lakes were screened for efficient H2 producers. Screening about 400 strains revealed several promising candidates producing similar amounts of H2 (during light) as the ΔhupL mutant of Anabaena PCC 7120, which is specifically engineered to produce higher amounts of H2 by the interruption of uptake hydrogenase. The optimal environmental conditions for H2 photoproduction were significantly different between various cyanobacterial strains. All suitable strains revealed during screening were N2-fixing, filamentous and heterocystous. The top ten H2 producers were characterized for the presence and activity of the enzymes involved in H2 metabolism. They all possess the genes encoding the conventional nitrogenase (nifHDK1). However, the high H2 photoproduction rates of these strains were shown not to be directly associated with the maximum capacities of highly active nitrogenase or bidirectional hydrogenase. Most of the good producers possessed a highly active uptake hydrogenase, which has been considered as an obstacle for efficient H2 production. Among the newly revealed best H2 producing strains, Calothrix 336/3 was chosen for further, detailed characterization. Comparative analysis of the structure of the nif and hup operons encoding the nitrogenase and uptake hydrogenase enzymes respectively showed minor differences between Calothrix 336/3 and other N2-fixing model cyanobacteria. Calothrix 336/3 is a filamentous, N2-fixing cyanobacterium with ellipsoidal, terminal heterocysts. A common feature of Calothrix 336/3 is that the cells readily adhere to substrates. To make use of this feature, and to additionally improve H2 photoproduction capacity of the Calothrix 336/3 strain, an immobilization technique was applied. The effects of immobilization within thin alginate films were evaluated by examining the photoproduction of H2 of immobilized Calothrix 336/3 in comparison to model strains, the Anabaena PCC 7120 and its ΔhupL mutant. In order to achieve optimal H2 photoproduction, cells were kept under nitrogen starved conditions (Ar atmosphere) to ensure the selective function of nitrogenase in reducing protons to H2. For extended H2 photoproduction, cells require CO2 for maintenance of photosynthetic activity and recovery cycles to fix N2. Application of regular H2 production and recovery cycles, Ar or air atmospheres respectively, resulted in prolongation of H2 photoproduction in both Calothrix 336/3 and the ΔhupL mutant of Anabaena PCC 7120. However, recovery cycles, consisting of air supplemented with CO2, induced a strong C/N unbalance in the ΔhupL mutant leading to a decrease in photosynthetic activity, although total H2 yield was still higher compared to the wild-type strain. My findings provide information about the diversity of cyanobacterial H2 capacities and mechanisms and provide knowledge of the possibilities of further enhancing cyanobacterial H2 production.