935 resultados para HOMO-POLYMERIZATION
Resumo:
Não disponível
Resumo:
Não disponível
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Objective: The aim of this study to investigate the effects of different polymerization protocols on the cuspal movement in class II composite restorations. Materials and methods: Human premolar teeth were prepared with class II cavities and then restored with composite and three-step and two-step etch-and-rinse adhesive systems under different curing techniques (n = 10). It was used a lightemittingdiode curing unit and the mode of polymerization were: standard (exposure for 40 seconds at 700 mW/cm2), pulse-delay (initial exposure for 6 seconds at 350 mW/cm2 followed by a resting period of 3 minutes and a final exposure of 37 seconds at 700 mW/cm2) and soft-start curing (exposure 10 seconds at 350 mW/cm2 and 35 seconds at 700 mW/cm2). The cuspal distance (µm) was measured before and after the restorative procedure and the difference was recorded as cuspal movement. The data were submitted to two-way ANOVA and Bonferroni test (p < 0.05). Results: The type of adhesive system did not influenced the cuspal movement for all the curing methods. Standard protocol showed the highest values of cuspal movement and was statistically different from the pulse-delay and soft-start curing modes. Conclusion: Although the cuspal displacement was not completely avoided, alternative methods of photocuring should be considered to minimize the clinical consequences of composites contraction stress.
Resumo:
This work examined the histological effects, on the rat palatal mucosa, of a denture base acrylic resin, submitted or not to a post-polymerization heat-treatment. Methods: Fifteen adult female Wistar rats, with sixty days old, weighting 150 g – 250 g were divided in G1: animals being maintained under the same conditions as the experimental groups following described, but without the use acrylic palatal plates (control group); G2: use of heat-polymerized acrylic resin palatal plates made of Lucitone 550; G3: use of palatal plates identical to G2, but subjected to a post-polymerization treatment in a water bath at 55°C for 60 min. The plates covered all the palate and were fixed in the molar region with light-cured resin, thus being kept there for 14 days. After the sacrifice, the palate was removed, fixed in formaldehyde 10% and decalcified with EDTA. Sections were stained using haematoxylin and eosin. Images in duplicate were made from the central region of the cuts, to measure the thickness (μm) of the keratin layers (TKC), epithelium total (TET) and connective tissue (TCC). Statistical analyses were carried out by one-way ANOVA and Tukey post-tests (α=0.05). Results: According to the results there was significant difference in the thickness of keratin between G2 and G3, with G1 having the intermediate value and similar to the other groups. There was a significant difference in the connective tissue with G3
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
High molecular weight semi crystalline thermoplastic poly(ester urethanes), TPEUs, were prepared from a vegetable oil-based diisocyanate, aliphatic diol chain extenders and poly(ethylene adipate) macro diol using one-shot, pre-polymer and multi-stage polyaddition methods. The optimized polymerization reaction achieved ultra-high molecular weight TPEUs (>2 million as determined by GPC) in a short time, indicating a very high HPMDI diol reactivity. TPEUs with very well controlled hard segment (HS) and soft segment (SS) blocks were prepared and characterized with DSC, TGA, tensile analysis, and WAXD in order to reveal structure property relationships. A confinement effect that imparts elastomeric properties to otherwise thermoplastic TPEUs was revealed. The confinement extent was found to vary predictably with structure indicating that one can custom engineer tougher polyurethane elastomers by "tuning" soft segment crystallinity with suitable HS block structure. Generally, the HPMDI-based TPEUs exhibited thermal stability and mechanical properties comparable to entirely petroleum-based TPEUs. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The purpose of this study was to evaluate the impact of different disinfection solutions on flexural resistance of chemically-activated acrylic resin. Test pieces were made of clear acrylic resin using a rectangular mold and employing two techniques: wet polymerization under pressure (n = 20) and dry polymerization under pressure (n = 20). Test pieces were subdivided into four equal groups: distilled water (control), sodium bicarbonate, 1% sodium hypochlorite and effervescent ats. The 30-day cycling technique consisted of immersing the test pieces in 100 ml of solution for 10 min three times a day and placing them in closed containers containing artificial saliva at 37°C. Subsequently, the flexural resistance of samples was tested. Data were analyzed using two-way analysis of variance (ANOVA) with forces serving as the dependent variables and the polymerization technique and cleaning agents as independent variables. Post hoc multiple comparisons were performed using Tukey’s test. There was no statistically significant difference in the flexural strength between the two polymerization techniques. The greatest flexural strength was observed for the effervescent tablets group followed by the control and 1% sodium hypochlorite groups which were statistically similar. Thus, the sodium bicarbonate solution caused the lowest flexural resistance of the test pieces.
Resumo:
Anionic surface-initiated polymerization of ethylene oxide and styrene has been performed using multiwalled carbon nanotubes (MWNTs) functionalized with anionic initiators. The surface of MWNTs was modified via covalent attachment of precursor anions such as 4-hydroxyethyl benzocyclobutene (BCBEO) and 1-benzocyclobutene-1′-phenylethylene (BCB-PE) through Diels-Alder cycloaddition at 235 °C. Surface-functionalized MWNTs-g-(BCB-EO) n and MWNTs-g-(BCB-PE) n with 23 and 54 wt % precursor initiators, respectively, were used for the polymerizations. Alkoxide anion on the surface of MWNTs-g-(BCB-EO) n was generated through reaction with potassium triphenylmethane for the polymerization of ethylene oxide in tetrahydrofuran and phenyl substituted alkyllithium was generated from the surface of MWNTs-g-(BCB-PE) n using sec-butyllithium for the polymerization of styrene in benzene. In both cases, the initiation was found to be very slow because of the heterogeneous reaction medium. However, the MWNTs gradually dispersed in the reaction medium during the polymerization. A pale green color was noticed in the case of ethylene oxide polymerization and the color of initiator as well as the propagating anions was not discernible visually in styrene polymerization. Polymer grafted nanocomposites, MWNTs-g-(BCB-PEO) n and MWNTs-g-(BCB-PS) n containing a very high percentage of hairy polymer with a small fraction of MWNTs (<1 wt %) were obtained. The conversion of ethylene oxide and the weight percent of PEO on the surface of the MWNTs increased with increasing reaction time indicating a controlled polymerization. The polymer-grafted MWNTs were characterized using FTIR, 1H NMR, Raman spectroscopy, differential scanning calorimetry, thermogravimetric analysis, and transmission electron microscopy (TEM). Size exclusion chromatography of the polymer grafted MWNTs revealed broad molecular weight distributions (1.3 < Mw/Mn < 1.8) indicating the presence of different sizes of polymer nanocomposites. The TEM images showed the presence of thick layers of polymer up to 30 nm around the MWNTs. The living nature of the growing polystyryllithium was used to produce diblock copolymer grafts using sequential polymerization of isoprene on the surface of MWNTs.
Resumo:
The reaction of living anionic polymers with 2,2,5,5-tetramethyl-1-(3-bromopropyl)-1-aza-2,5- disilacyclopentane (1) was investigated using coupled thin layer chromatography and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Structures of byproducts as well as the major product were determined. The anionic initiator having a protected primary amine functional group, 2,2,5,5-tetramethyl- 1-(3-lithiopropyl)-1-aza-2,5-disilacyclopentane (2), was synthesized using all-glass high-vacuum techniques, which allows the long-term stability of this initiator to be maintained. The use of 2 in the preparation of well-defined aliphatic primary amine R-end-functionalized polystyrene and poly(methyl methacrylate) was investigated. Primary amino R-end-functionalized poly(methyl methacrylate) can be obtained near-quantitatively by reacting 2 with 1,1-diphenylethylene in tetrahydrofuran at room temperature prior to polymerizing methyl methacrylate at -78 °C. When 2 is used to initiate styrene at room temperature in benzene, an additive such as N,N,N',N'- tetramethylethylenediamine is necessary to activate the polymerization. However, although the resulting polymers have narrow molecular weight distributions and well-controlled molecular weights, our mass spectra data suggest that the yield of primary amine α-end-functionalized polystyrene from these syntheses is very low. The majority of the products are methyl α-end-functionalized polystyrene.
Resumo:
Living anionic polymerization of 4-vinylbenzocylobutene was performed in benzene at room temperature using sec-butyllithium as the initiator. Results of the kinetic studies indicated the termination- and transfer-free nature of the polymerization. Homopolymers with predictable molecular weights and narrow molecular weight distributions were produced, excluding the interference of the cyclobutene rings during initiation and propagation. Thermogravimetric analysis of poly(4-vinylbenzocyclobutene) in air showed a small weight gain at ~200 °C, a rapid decomposition at ~455 °C, and a gradual decomposition at ~566 °C. This behavior was attributed to the formation of radicals from the pendent benzocyclobutene functionality through o-quinodimethane intermediates and simultaneous decomposition/cross-linking reactions at high temperature. The living nature of the polymerization was also examined via sequential copolymerization with butadiene to form diblock copolymers.
Resumo:
Chain topology, including branch node, chain link and cross-link dynamics that contribute to the number of elastically active strands and junctions, are calculated using purely deterministic derivations. Solutions are not coupled to population density distributions. An eigenzeit transformation assists in the conversion of expressions derived by chemical reaction principles from time to conversion space, yielding transport phenomena type expressions where the rate of change in the molar concentrations of branch nodes with respect to conversion is expressed as functions of the fraction of reactive sites on precursors and reactants. Analogies are hypothesized to exist in cross-linking space that effectively distribute branch nodes with i reacted moieties between cross-links having j bonds extending to the gel. To obtain solutions, reacted sites on nodes or links with finite chain extensions are examined in terms of stoichiometry associated with covalent bonding. Solutions replicate published results based on Miller and Macosko’s recursive procedure and results obtained from truncated weighted sums of population density distributions as suggested by Flory.