809 resultados para Graduation in technology
Resumo:
A strategic planning process has been implemented at the Brazilian Agricultural Research Agency (Embrapa) to introduce sustainable development objectives in all steps of agricultural Research and Development. An essential component of the institutional mission statement hence devised has called for the systematic assessment of social and environmental impacts (in addition to the traditionally studied economic ones) of all technology innovations resulting from R&D. The proposed approach emphasizes the interest of promoting close interaction between R&D teams and technology-adopting producers, under actual field contexts, in order to improve both the technology development and the demand probing processes. Given the multiplicity of technological applications ensuing from Embrapa?s very broad research encompassment, and the variety of environmental and productive contexts involved, a customized impact assessment system has been proposed. Directed at the appraisal of agricultural technology development research projects (ex-ante) as well as their ensuing innovations (ex-post), the Ambitec-Agro System comprises a set of integrated socio-environmental indicators, constructed in modules suited to Agricultural, Animal husbandry, and Agro-industrial activities, besides a specific module for Social Impact Assessment. The system has been routinely applied in technology appraisal in all of Embrapa?s Units, as a basis for their institutional performance evaluations, and toward the formulation of the annual Social Balance Report. Following the inception of this institutional technology appraisal initiative, several methodological innovations have been proposed within Embrapa, including technical improvements and applicability adaptations of the Ambitec-Agro system, and approaches to further-reaching objectives, such as the sustainable development of rural communities, and the environmental management of agricultural activities.
Resumo:
Advancements in technology have enabled increasingly sophisticated automation to be introduced into the flight decks of modern aircraft. Generally, this automation was added to accomplish worthy objectives such as reducing flight crew workload, adding additional capability, or increasing fuel economy. Automation is necessary due to the fact that not all of the functions required for mission accomplishment in today’s complex aircraft are within the capabilities of the unaided human operator, who lacks the sensory capacity to detect much of the information required for flight. To a large extent, these objectives have been achieved. Nevertheless, despite all the benefits from the increasing amounts of highly reliable automation, vulnerabilities do exist in flight crew management of automation and Situation Awareness (SA). Issues associated with flight crew management of automation include: • Pilot understanding of automation’s capabilities, limitations, modes, and operating principles and techniques. • Differing pilot decisions about the appropriate automation level to use or whether to turn automation on or off when they get into unusual or emergency situations. • Human-Machine Interfaces (HMIs) are not always easy to use, and this aspect could be problematic when pilots experience high workload situations. • Complex automation interfaces, large differences in automation philosophy and implementation among different aircraft types, and inadequate training also contribute to deficiencies in flight crew understanding of automation.
Resumo:
The industrial context is changing rapidly due to advancements in technology fueled by the Internet and Information Technology. The fourth industrial revolution counts integration, flexibility, and optimization as its fundamental pillars, and, in this context, Human-Robot Collaboration has become a crucial factor for manufacturing sustainability in Europe. Collaborative robots are appealing to many companies due to their low installation and running costs and high degree of flexibility, making them ideal for reshoring production facilities with a short return on investment. The ROSSINI European project aims to implement a true Human-Robot Collaboration by designing, developing, and demonstrating a modular and scalable platform for integrating human-centred robotic technologies in industrial production environments. The project focuses on safety concerns related to introducing a cobot in a shared working area and aims to lay the groundwork for a new working paradigm at the industrial level. The need for a software architecture suitable to the robotic platform employed in one of three use cases selected to deploy and test the new technology was the main trigger of this Thesis. The chosen application consists of the automatic loading and unloading of raw-material reels to an automatic packaging machine through an Autonomous Mobile Robot composed of an Autonomous Guided Vehicle, two collaborative manipulators, and an eye-on-hand vision system for performing tasks in a partially unstructured environment. The results obtained during the ROSSINI use case development were later used in the SENECA project, which addresses the need for robot-driven automatic cleaning of pharmaceutical bins in a very specific industrial context. The inherent versatility of mobile collaborative robots is evident from their deployment in the two projects with few hardware and software adjustments. The positive impact of Human-Robot Collaboration on diverse production lines is a motivation for future investments in research on this increasingly popular field by the industry.
Resumo:
Valvular insufficiency is a growingly common valvular heart disease that frequently is associated with regurgitation. Atrioventricular incompetency can lead to overall ventricular and atrial enlargement, volume overload, heart impairment and, if not treated, can culminate in heart failure. With the advances in technology and the increasing interest in devices that have lower post-operative burden on patients, transcatheter mitral and tricuspid valve repair systems are going through a phase of rapid development and growing use. In this work, we aimed to quantitatively assess the morphology of mitral and tricuspid annuli in patients who underwent transcatheter valve repair with MitraClip/TriClip, before and after the intervention, using three-dimensional transoesophageal echocardiography images, in order to evaluate the geometrical changes of the annulus following the intervention. For our purposes, firstly, we implemented a tool for the visualization and navigation of the volumetric data across the cardiac cycle. Then, in order to track the annulus over the cardiac cycle, we extracted five rotational slices from the volume data, selected two initial points on each slice, and tracked these points across the cardiac cycle using KLT algorithm. In a first stage we led a parameters optimization for the tracking method, and we studied the sensitivity of the KLT algorithm to the initialization points, that are manually chosen by the user. In a second stage, we analysed 10 subjects (5 for mitral regurgitation and 5 for tricuspid regurgitation), tracking their annulus before and after valve repairment. In conclusion, we found in all our 10 subjects that immediately after the intervention there is a shortening of the major diameters of the valves, mainly the shortest diameter, due to the clip application, that leads to a reduction of the perimeter and the area of the annulus.
Resumo:
Taiwan's technical vocational educational system includes three levels: (1) institutes of technology (two and four year programs), (2) junior colleges (two, three and five year programs), and (3) senior vocational schools. Two-year junior colleges enroll their students through two channels: (1) based on results of the Particular Screening Entrance Examination (PSEE), (2) based on the Joint College Entrance Examination (JCEE). The PSEE has two categories: Category I includes on-time graduates with excellent performance, which means that they are within the top ten of their classes; Category II students include award-winning students in talent contests who have achieved a minimum grade point average of 75%. The JCEE is a regular entrance examination given to any senior vocation school graduate.^ Basic courses have a great impact on the students' academic performance. The purpose of the study was to focus on the effectiveness of teaching mathematics in two-year junior colleges and to analyze and correlate the results of two-year junior college students' performance in calculus and on-time graduation. The target group consisted of 521 students enrolled at National Taipei Institute of Technology in 1993.^ Calculus is a very important course for engineering majors in two-year junior colleges and has a great impact on the students' academic performance. This retrospective study showed that there was a correlation between students' performance in calculus and on-time graduation after two years of study.^ The conclusions of the study urge the Ministry of Education to reform two-year junior college curriculum standards to emphasize basic rudimentary courses. It is recommended that engineering majors receive three hours of calculus per week as the current requirement of only two hours per week is inadequate. The future job market will require a technologically advanced labor force that can be trained in a higher education system. More channels of higher education for two-year junior college graduates should be made available for those wishing to pursue bachelor degrees. Additional work in calculus will not only enhance the opportunities for two-year junior college graduates to continue their pursuit of an advanced academic degree, but also serve them well as they seek career advancement. ^
Resumo:
We analyze the migration behavior of graduates from UK universities with a focus on the salary benefits they receive from the migration process. We focus on sequential interregional migration and specifically examine the case of Science, Technology, Engineering and Mathematics (STEM) and Creative subject graduates. Our analysis differs from previous studies in that it accounts explicitly for migrant selectivity through propensity score matching, and it also classifies graduates into different migration behavior categories. Graduates were classified according to their sequential migration behavior first from their pre-university domicile to university and then from university to first job post-graduation. Our results show that ‘repeat migration’, as expected, is associated with the highest wage premium (around 15%). Other migration behaviors are also advantageous although this varies across different types of graduates. Creative graduates, for instance, do not benefit much from migration behaviors other than repeat migration. STEM graduates, on the contrary, benefit from both late migration and staying in the university area to work.
Resumo:
The main purpose of this study was to investigate marketing practices in Taiwan's institutions of higher education and their relationship with students' college choice behaviors and attitudes. The study was conducted in 11 Taiwan's colleges of technology. It employed a multistrand conversion mixed model design, consisting of a qualitative and a quantitative strand. Funnel-sequenced interviews were conducted with 19 college administrators and the results were content analyzed using a constant-comparative method. The administrator interview data were also quantitized and used in cluster analysis of the institutions. Questionnaire data were collected from 1474 freshmen students, and analyzed using several univariate and multivariate statistical techniques including factor analysis, MANOVA, and correspondence analysis. ^ Analyses indicated that a weak relationship existed between institutions' marketing intensity and students' college choice. Students did not consider institutions' recruitment activities useful in their college searching process. They also reported little knowledge of their current school when they were deciding to enroll. Data analysis also revealed that students were practically oriented in their college selection. Academic resources, employability after graduation, and tuition were the most important attributes in students' college selection. Parents and students' social network such as friends and high school teachers were significant personal sources in enrollment decisions while institutions' representatives (i.e., recruiters) were considered the least influential. ^ Using cluster analysis, institutions were divided into three groups based on intensity of marketing efforts. Multivariate analysis of variance did not reveal significant differences between the college choice behaviors and attitudes of students who entered these three types of institutions. ^ Content analysis of the administrators' interviews indicated that the majority of them practiced passive marketing. This was primarily as a result of resistance to active marketing, lack of leadership commitment, insufficient financial and human resources, little faculty involvement, and inexperience in marketing. In comparison to public institutions, private institutions showed a more favorable attitude towards marketing concepts. They were well advanced in their recruitment activities while public schools were relatively hesitant to use marketing. Curriculum issues were not well represented in marketing activities and did not seem to be impacted by marketing needs. Based on the analysis of qualitative and quantitative data, it can be concluded that in these colleges, curriculum was more driven by commercial and industrial interest than by students' demands. ^ Theoretical, policy, and methodological implementation of the results were discussed. ^
Resumo:
For the past several years, U.S. colleges and universities have faced increased pressure to improve retention and graduation rates. At the same time, educational institutions have placed a greater emphasis on the importance of enrolling more students in STEM (science, technology, engineering and mathematics) programs and producing more STEM graduates. The resulting problem faced by educators involves finding new ways to support the success of STEM majors, regardless of their pre-college academic preparation. The purpose of my research study involved utilizing first-year STEM majors’ math SAT scores, unweighted high school GPA, math placement test scores, and the highest level of math taken in high school to develop models for predicting those who were likely to pass their first math and science courses. In doing so, the study aimed to provide a strategy to address the challenge of improving the passing rates of those first-year students attempting STEM-related courses. The study sample included 1018 first-year STEM majors who had entered the same large, public, urban, Hispanic-serving, research university in the Southeastern U.S. between 2010 and 2012. The research design involved the use of hierarchical logistic regression to determine the significance of utilizing the four independent variables to develop models for predicting success in math and science. The resulting data indicated that the overall model of predictors (which included all four predictor variables) was statistically significant for predicting those students who passed their first math course and for predicting those students who passed their first science course. Individually, all four predictor variables were found to be statistically significant for predicting those who had passed math, with the unweighted high school GPA and the highest math taken in high school accounting for the largest amount of unique variance. Those two variables also improved the regression model’s percentage of correctly predicting that dependent variable. The only variable that was found to be statistically significant for predicting those who had passed science was the students’ unweighted high school GPA. Overall, the results of my study have been offered as my contribution to the literature on predicting first-year student success, especially within the STEM disciplines.
Resumo:
Considering the increasing popularity of network-based control systems and the huge adoption of IP networks (such as the Internet), this paper studies the influence of network quality of service (QoS) parameters over quality of control parameters. An example of a control loop is implemented using two LonWorks networks (CEA-709.1) interconnected by an emulated IP network, in which important QoS parameters such as delay and delay jitter can be completely controlled. Mathematical definitions are provided according to the literature, and the results of the network-based control loop experiment are presented and discussed.
Resumo:
The application of airborne laser scanning (ALS) technologies in forest inventories has shown great potential to improve the efficiency of forest planning activities. Precise estimates, fast assessment and relatively low complexity can explain the good results in terms of efficiency. The evolution of GPS and inertial measurement technologies, as well as the observed lower assessment costs when these technologies are applied to large scale studies, can explain the increasing dissemination of ALS technologies. The observed good quality of results can be expressed by estimates of volumes and basal area with estimated error below the level of 8.4%, depending on the size of sampled area, the quantity of laser pulses per square meter and the number of control plots. This paper analyzes the potential of an ALS assessment to produce certain forest inventory statistics in plantations of cloned Eucalyptus spp with precision equal of superior to conventional methods. The statistics of interest in this case were: volume, basal area, mean height and dominant trees mean height. The ALS flight for data assessment covered two strips of approximately 2 by 20 Km, in which clouds of points were sampled in circular plots with a radius of 13 m. Plots were sampled in different parts of the strips to cover different stand ages. The clouds of points generated by the ALS assessment: overall height mean, standard error, five percentiles (height under which we can find 10%, 30%, 50%,70% and 90% of the ALS points above ground level in the cloud), and density of points above ground level in each percentile were calculated. The ALS statistics were used in regression models to estimate mean diameter, mean height, mean height of dominant trees, basal area and volume. Conventional forest inventory sample plots provided real data. For volume, an exploratory assessment involving different combinations of ALS statistics allowed for the definition of the most promising relationships and fitting tests based on well known forest biometric models. The models based on ALS statistics that produced the best results involved: the 30% percentile to estimate mean diameter (R(2)=0,88 and MQE%=0,0004); the 10% and 90% percentiles to estimate mean height (R(2)=0,94 and MQE%=0,0003); the 90% percentile to estimate dominant height (R(2)=0,96 and MQE%=0,0003); the 10% percentile and mean height of ALS points to estimate basal area (R(2)=0,92 and MQE%=0,0016); and, to estimate volume, age and the 30% and 90% percentiles (R(2)=0,95 MQE%=0,002). Among the tested forest biometric models, the best fits were provided by the modified Schumacher using age and the 90% percentile, modified Clutter using age, mean height of ALS points and the 70% percentile, and modified Buckman using age, mean height of ALS points and the 10% percentile.
Resumo:
Objective: To demonstrate the potential of GIS (geographic information system) technology and ARIA (Accessibility/Remoteness Index for Australia) as tools for medical workforce and health service planning in Australia. Design: ARIA is an index of remoteness derived by measuring road distance between populated localities and service centres. A continuous variable of remoteness from 0 to 12 is generated for any location in Australia. We created a GIS, with data on location of general practitioner services in non-metropolitan South Australia derived from the database of HUMPS (Rural Undergraduate Medical Placement System), and estimated, for the 1170 populated localities in South Australia, the accessibility/inaccessibility of the 109 identified GP services. Main outcome measures: Distance from populated locality to GP services. Results: Distance from populated locality to GP service ranged from 0 to 677 km (mean, 58 km). In all, 513 localities (43%) had a GP service within 20 km (for the majority this meant located within the town). However, for 173 populated localities (15%), the nearest GP service was more than 80 km away. There was a strong correlation between distance to GP service and ARIA value for each locality (0.69; P<0.05). Conclusions: GP services are relatively inaccessible to many rural South Australian communities. There is potential for GIS and for ARIA to contribute to rational medical workforce and health service planning. Adding measures of health need and more detailed data on types and extent of GP services provided will allow more sophisticated planning.
Resumo:
Managing a variable demand scenario is particularly challenging on services organizations because services companies usually have a major part of fixed costs. The article studies how a services organization manages its demand variability and its relation with the organization`s profitability. Moreover, the study searched for alternatives used to reduce the demand variability`s impact on the profitability of the company. The research was based on a case study with a Brazilian services provider on information technology business. The study suggests that alternatives like using outsourced employees to cover demand peaks may bring benefits only on short term, reducing the profitability of the company on long term: Some options are revealed, like the internationalization of employees and the investment on developing its own workforce.