980 resultados para Global temperature changes.
Resumo:
The climate crisis is the greatest challenge humanity has ever faced, and in 2023 the average global temperature reached new records, prompting the UN Secretary General to declare that 'the era of global warming is over, and the era of global boiling has arrived'. In this context, urban areas play a key role, and can be considered a bottleneck of the climate crisis. The European Commission is investing billions of euros in research and innovation projects in urban areas, while the European Green Deal strategy has the ambition of making Europe the first carbon-neutral continent on the planet by 2050. However, studies and research show that the causes of the climate crisis are rooted in an economic system that produces profound inequalities, and the very solutions to address the consequences of global warming risk deepening them. In this context, the role of cities is not only to decarbonise their urban fabric, but to build solutions to the social challenge posed by the climate crisis, promoting paradigm shifts capable of producing trajectories towards so-called 'climate justice'. This research analyses, through a holistic view, European policies in these fields, and delves into the actions and projects of four European cities - Amsterdam, Bilbao, Freiburg, and Lisbon - through a qualitative approach aimed at identifying strengths and contradictions of strategies to tackle the climate crisis. Delving into the collective dynamics and social impacts of the actions promoted, the research proposes a comprehensive view of the role that urban areas can play not only in decarbonising society, but in promoting a paradigm shift capable of addressing the economic causes and social consequences of the climate crisis.
Resumo:
A multivariate fit to the variation in global mean surface air temperature anomaly over the past half century is presented. The fit procedure allows for the effect of response time on the waveform, amplitude and lag of each radiative forcing input, and each is allowed to have its own time constant. It is shown that the contribution of solar variability to the temperature trend since 1987 is small and downward; the best estimate is -1.3% and the 2sigma confidence level sets the uncertainty range of -0.7 to -1.9%. The result is the same if one quantifies the solar variation using galactic cosmic ray fluxes (for which the analysis can be extended back to 1953) or the most accurate total solar irradiance data composite. The rise in the global mean air surface temperatures is predominantly associated with a linear increase that represents the combined effects of changes in anthropogenic well-mixed greenhouse gases and aerosols, although, in recent decades, there is also a considerable contribution by a relative lack of major volcanic eruptions. The best estimate is that the anthropogenic factors contribute 75% of the rise since 1987, with an uncertainty range (set by the 2sigma confidence level using an AR(1) noise model) of 49–160%; thus, the uncertainty is large, but we can state that at least half of the temperature trend comes from the linear term and that this term could explain the entire rise. The results are consistent with the intergovernmental panel on climate change (IPCC) estimates of the changes in radiative forcing (given for 1961–1995) and are here combined with those estimates to find the response times, equilibrium climate sensitivities and pertinent heat capacities (i.e. the depth into the oceans to which a given radiative forcing variation penetrates) of the quasi-periodic (decadal-scale) input forcing variations. As shown by previous studies, the decadal-scale variations do not penetrate as deeply into the oceans as the longer term drifts and have shorter response times. Hence, conclusions about the response to century-scale forcing changes (and hence the associated equilibrium climate sensitivity and the temperature rise commitment) cannot be made from studies of the response to shorter period forcing changes.
Resumo:
Species range shifts in response to climate and land use change are commonly forecasted with species distribution models based on species occurrence or abundance data. Although appealing, these models ignore the genetic structure of species, and the fact that different populations might respond in different ways because of adaptation to their environment. Here, we introduced ancestry distribution models, that is, statistical models of the spatial distribution of ancestry proportions, for forecasting intra-specific changes based on genetic admixture instead of species occurrence data. Using multi-locus genotypes and extensive geographic coverage of distribution data across the European Alps, we applied this approach to 20 alpine plant species considering a global increase in temperature from 0.25 to 4 °C. We forecasted the magnitudes of displacement of contact zones between plant populations potentially adapted to warmer environments and other populations. While a global trend of movement in a north-east direction was predicted, the magnitude of displacement was species-specific. For a temperature increase of 2 °C, contact zones were predicted to move by 92 km on average (minimum of 5 km, maximum of 212 km) and by 188 km for an increase of 4 °C (minimum of 11 km, maximum of 393 km). Intra-specific turnover-measuring the extent of change in global population genetic structure-was generally found to be moderate for 2 °C of temperature warming. For 4 °C of warming, however, the models indicated substantial intra-specific turnover for ten species. These results illustrate that, in spite of unavoidable simplifications, ancestry distribution models open new perspectives to forecast population genetic changes within species and complement more traditional distribution-based approaches.
Resumo:
Abstract In this study, chromosomal inversion polymorphism data for a natural population of Drosophila subobscura from a swampy region near the town of Apatin (Serbia) were compared with data for the same population collected approximately 15 years earlier. The pattern of chromosomal inversion polymorphism changed over time. There were significant increases in the frequency of characteristic southern latitude ("warm" adapted) chromosomal arrangements and significant decreases in the frequency of characteristic northern latitude ("cold" adapted) chromosomal arrangements in the O and U chromosomes. The chromosomal arrangements O3+4 and O3+4+22 (derived from the O3+4 arrangement)showed significant increases in 2008 and 2009 with regard to the 1994 sample. There was also a significant increase (~50%) in the U1+2 arrangement, while U1+8+2 (a typical southern arrangement) was detected for the first time. Since the Apatin swampy population ofD. subobscura has existed for a long time in a stable habitat with high humidity that has not been changed by man our results indicate that natural selection has produced chromosomal changes in response to the increase in temperature that has occurred in the Balkan Peninsula of central southeastern European. Key words: chromosomal inversions, Drosophila subobscura, global warming, karyotypes.
Resumo:
The chromosomal inversion polymorphism of Drosophila subobscura is adaptive to environmental changes. The population of Petnica, Serbia, was chosen to analyze short- and long-term changes in this polymorphism. Short-term changes were studied in the samples collected in May, June, and August of 1995. The inversion polymorphism varied over these months, although various interpretations are possible. To analyze long-term changes, samples obtained in May 1995 and May 2010 were compared. The frequency of the 'cold' adapted inversions (Ast, Jst, Ust, Est, and Ost) decreased and that of the 'warm' adapted inversions (A2, J1, U1+2, and O3+4) increased, from 1995 to 2010. These changes are consistent with the general increase in temperature recorded in Petnica for the same period. Finally, the possible response of chromosomal polymorphism to global warming was analyzed at the regional level (Balkan peninsula). This polymorphism depends on the ecological conditions of the populations, and the changes observed appear to be consistent with global warming expectations. Natural selection seems to be the main mechanism responsible for the evolution of this chromosomal polymorphism.
Resumo:
The chromosomal inversion polymorphism of Drosophila subobscura is adaptive to environmental changes. The population of Petnica, Serbia, was chosen to analyze short- and long-term changes in this polymorphism. Short-term changes were studied in the samples collected in May, June, and August of 1995. The inversion polymorphism varied over these months, although various interpretations are possible. To analyze long-term changes, samples obtained in May 1995 and May 2010 were compared. The frequency of the 'cold' adapted inversions (Ast, Jst, Ust, Est, and Ost) decreased and that of the 'warm' adapted inversions (A2, J1, U1+2, and O3+4) increased, from 1995 to 2010. These changes are consistent with the general increase in temperature recorded in Petnica for the same period. Finally, the possible response of chromosomal polymorphism to global warming was analyzed at the regional level (Balkan peninsula). This polymorphism depends on the ecological conditions of the populations, and the changes observed appear to be consistent with global warming expectations. Natural selection seems to be the main mechanism responsible for the evolution of this chromosomal polymorphism.
Resumo:
Increased emissions of greenhouse gases into the atmosphere are causing an anthropogenic climate change. The resulting global warming challenges the ability of organisms to adapt to the new temperature conditions. However, warming is not the only major threat. In marine environments, dissolution of carbon dioxide from the atmosphere causes a decrease in surface water pH, the so called ocean acidification. The temperature and acidification effects can interact, and create even larger problems for the marine flora and fauna than either of the effects would cause alone. I have used Baltic calanoid copepods (crustacean zooplankton) as my research object and studied their growth and stress responses using climate predictions projected for the next century. I have studied both direct temperature and pH effects on copepods, and indirect effects via their food: the changing phytoplankton spring bloom composition and toxic cyanobacterium. The main aims of my thesis were: 1) to find out how warming and acidification combined with a toxic cyanobacterium affect copepod reproductive success (egg production, egg viability, egg hatching success, offspring development) and oxidative balance (antioxidant capacity, oxidative damage), and 2) to reveal the possible food quality effects of spring phytoplankton bloom composition dominated by diatoms or dinoflagellates on reproducing copepods (egg production, egg hatching, RNA:DNA ratio). The two copepod genera used, Acartia sp. and Eurytemora affinis are the dominating mesozooplankton taxa (0.2 – 2 mm) in my study area the Gulf of Finland. The 20°C temperature seems to be within the tolerance limits of Acartia spp., because copepods can adapt to the temperature phenotypically by adjusting their body size. Copepods are also able to tolerate a pH decrease of 0.4 from present values, but the combination of warm water and decreased pH causes problems for them. In my studies, the copepod oxidative balance was negatively influenced by the interaction of these two environmental factors, and egg and nauplii production were lower at 20°C and lower pH, than at 20°C and ambient pH. However, presence of toxic cyanobacterium Nodularia spumigena improved the copepod oxidative balance and helped to resist the environmental stress, in question. In addition, adaptive maternal effects seem to be an important adaptation mechanism in a changing environment, but it depends on the condition of the female copepod and her diet how much she can invest in her offspring. I did not find systematic food quality difference between diatoms and dinoflagellates. There are both good and bad diatom and dinoflagellate species. Instead, the dominating species in the phytoplankton bloom composition has a central role in determining the food quality, although copepods aim at obtaining as a balanced diet as possible by foraging on several species. If the dominating species is of poor quality it can cause stress when ingested, or lead to non-optimal foraging if rejected. My thesis demonstrates that climate change induced water temperature and pH changes can cause problems to Baltic Sea copepod communities. However, their resilience depends substantially on their diet, and therefore the response of phytoplankton to the environmental changes. As copepods are an important link in pelagic food webs, their future success can have far reaching consequences, for example on fish stocks.
Resumo:
Under global warming, the predicted intensification of the global freshwater cycle will modify the net freshwater flux at the ocean surface. Since the freshwater flux maintains ocean salinity structures, changes to the density-driven ocean circulation are likely. A modified ocean circulation could further alter the climate, potentially allowing rapid changes, as seen in the past. The relevant feedback mechanisms and timescales are poorly understood in detail, however, especially at low latitudes where the effects of salinity are relatively subtle. In an attempt to resolve some of these outstanding issues, we present an investigation of the climate response of the low-latitude Pacific region to changes in freshwater forcing. Initiated from the present-day thermohaline structure, a control run of a coupled ocean-atmosphere general circulation model is compared with a perturbation run in which the net freshwater flux is prescribed to be zero over the ocean. Such an extreme experiment helps to elucidate the general adjustment mechanisms and their timescales. The atmospheric greenhouse gas concentrations are held constant, and we restrict our attention to the adjustment of the upper 1,000 m of the Pacific Ocean between 40°N and 40°S, over 100 years. In the perturbation run, changes to the surface buoyancy, near-surface vertical mixing and mixed-layer depth are established within 1 year. Subsequently, relative to the control run, the surface of the low-latitude Pacific Ocean in the perturbation run warms by an average of 0.6°C, and the interior cools by up to 1.1°C, after a few decades. This vertical re-arrangement of the ocean heat content is shown to be achieved by a gradual shutdown of the heat flux due to isopycnal (i.e. along surfaces of constant density) mixing, the vertical component of which is downwards at low latitudes. This heat transfer depends crucially upon the existence of density-compensating temperature and salinity gradients on isopycnal surfaces. The timescale of the thermal changes in the perturbation run is therefore set by the timescale for the decay of isopycnal salinity gradients in response to the eliminated freshwater forcing, which we demonstrate to be around 10-20 years. Such isopycnal heat flux changes may play a role in the response of the low-latitude climate to a future accelerated freshwater cycle. Specifically, the mechanism appears to represent a weak negative sea surface temperature feedback, which we speculate might partially shield from view the anthropogenically-forced global warming signal at low latitudes. Furthermore, since the surface freshwater flux is shown to play a role in determining the ocean's thermal structure, it follows that evaporation and/or precipitation biases in general circulation models are likely to cause sea surface temperature biases.
Resumo:
Simulations of the last 500 yr carried out using the Third Hadley Centre Coupled Ocean-Atmosphere GCM (HadCM3) with anthropogenic and natural (solar and volcanic) forcings have been analyzed. Global-mean surface temperature change during the twentieth century is well reproduced. Simulated contributions to global-mean sea level rise during recent decades due to thermal expansion (the largest term) and to mass loss from glaciers and ice caps agree within uncertainties with observational estimates of these terms, but their sum falls short of the observed rate of sea level rise. This discrepancy has been discussed by previous authors; a completely satisfactory explanation of twentieth-century sea level rise is lacking. The model suggests that the apparent onset of sea level rise and glacier retreat during the first part of the nineteenth century was due to natural forcing. The rate of sea level rise was larger during the twentieth century than during the previous centuries because of anthropogenic forcing, but decreasing natural forcing during the second half of the twentieth century tended to offset the anthropogenic acceleration in the rate. Volcanic eruptions cause rapid falls in sea level, followed by recovery over several decades. The model shows substantially less decadal variability in sea level and its thermal expansion component than twentieth-century observations indicate, either because it does not generate sufficient ocean internal variability, or because the observational analyses overestimate the variability.
Resumo:
Assessment of changes in precipitation (P) as a function of percentiles of surface temperature (T) and 500 hPa vertical velocity (ω) are presented, considering present-day simulations and observational estimates from the Global Precipitation Climatology Project (GPCP) combined with the European Centre for Medium-range Weather Forecasts Interim reanalysis (ERA Interim). There is a tendency for models to overestimate P in the warm, subsiding regimes compared to GPCP, in some cases by more than 100%, while many models underestimate P in the moderate temperature regimes. Considering climate change projections between 1980–1999 and 2080–2099, responses in P are characterised by dP/dT ≥ 4%/K over the coldest 10–20% of land points and over warm, ascending ocean points while P declines over the warmest, descending regimes (dP/dT ∼ − 4%/K for model ensemble means). The reduced Walker circulation limits this contrasting dP/dT response in the tropical wet and dry regimes only marginally. Around 70% of the global surface area exhibits a consistent sign for dP/dT in at least 6 out of a 7-member model ensemble when considering P composites in terms of dynamic regime.
Resumo:
Combining satellite data, atmospheric reanalyses and climate model simulations, variability in the net downward radiative flux imbalance at the top of Earth's atmosphere (N) is reconstructed and linked to recent climate change. Over the 1985-1999 period mean N (0.34 ± 0.67 Wm–2) is lower than for the 2000-2012 period (0.62 ± 0.43 Wm–2, uncertainties at 90% confidence level) despite the slower rate of surface temperature rise since 2000. While the precise magnitude of N remains uncertain, the reconstruction captures interannual variability which is dominated by the eruption of Mt. Pinatubo in 1991 and the El Niño Southern Oscillation. Monthly deseasonalized interannual variability in N generated by an ensemble of 9 climate model simulations using prescribed sea surface temperature and radiative forcings and from the satellite-based reconstruction is significantly correlated (r ∼ 0.6) over the 1985-2012 period.
Resumo:
The subject of climate feedbacks focuses attention on global mean surface air temperature (GMST) as the key metric of climate change. But what does knowledge of past and future GMST tell us about the climate of specific regions? In the context of the ongoing UNFCCC process, this is an important question for policy-makers as well as for scientists. The answer depends on many factors, including the mechanisms causing changes, the timescale of the changes, and the variables and regions of interest. This paper provides a review and analysis of the relationship between changes in GMST and changes in local climate, first in observational records and then in a range of climate model simulations, which are used to interpret the observations. The focus is on decadal timescales, which are of particular interest in relation to recent and near-future anthropogenic climate change. It is shown that GMST primarily provides information about forced responses, but that understanding and quantifying internal variability is essential to projecting climate and climate impacts on regional-to-local scales. The relationship between local forced responses and GMST is often linear but may be nonlinear, and can be greatly complicated by competition between different forcing factors. Climate projections are limited not only by uncertainties in the signal of climate change but also by uncertainties in the characteristics of real-world internal variability. Finally, it is shown that the relationship between GMST and local climate provides a simple approach to climate change detection, and a useful guide to attribution studies.
Resumo:
Analysis of observations indicates that there was a rapid increase in summer (June-August, JJA) mean surface air temperature (SAT) since the mid-1990s over Western Europe. Accompanying this rapid warming are significant increases in summer mean daily maximum temperature, daily minimum temperature, annual hottest day temperature and warmest night temperature, and an increase in frequency of summer days and tropical nights, while the change in the diurnal temperature range (DTR) is small. This study focuses on understanding causes of the rapid summer warming and associated temperature extreme changes. A set of experiments using the atmospheric component of the state-of-the-art HadGEM3 global climate model have been carried out to quantify relative roles of changes in sea surface temperature (SST)/sea ice extent (SIE), anthropogenic greenhouse gases (GHGs), and anthropogenic aerosols (AAer). Results indicate that the model forced by changes in all forcings reproduces many of the observed changes since the mid-1990s over Western Europe. Changes in SST/SIE explain 62.2% ± 13.0% of the area averaged seasonal mean warming signal over Western Europe, with the remaining 37.8% ± 13.6% of the warming explained by the direct impact of changes in GHGs and AAer. Results further indicate that the direct impact of the reduction of AAer precursor emissions over Europe, mainly through aerosol-radiation interaction with additional contributions from aerosol-cloud interaction and coupled atmosphere-land surface feedbacks, is a key factor for increases in annual hottest day temperature and in frequency of summer days. It explains 45.5% ± 17.6% and 40.9% ± 18.4% of area averaged signals for these temperature extremes. The direct impact of the reduction of AAer precursor emissions over Europe acts to increase DTR locally, but the change in DTR is countered by the direct impact of GHGs forcing. In the next few decades, greenhouse gas concentrations will continue to rise and AAer precursor emissions over Europe and North America will continue to decline. Our results suggest that the changes in summer seasonal mean SAT and temperature extremes over Western Europe since the mid-1990s are most likely to be sustained or amplified in the near term, unless other factors intervene.
Resumo:
We compare the ocean temperature evolution of the Holocene as simulated by climate models and reconstructed from marine temperature proxies. This site provides informations about the Holocene temperature trends as simulated by the models. We use transient simulations from a coupled atmosphere-ocean general circulation model, as well as an ensemble of time slice simulations from the Paleoclimate Modelling Intercomparison Project. The general pattern of sea surface temperature (SST) in the models shows a high latitude cooling and a low latitude warming. The proxy dataset comprises a global compilation of marine alkenone- and Mg/Ca-derived SST estimates. Independently of the choice of the climate model, we observe significant mismatches between modelled and estimated SST amplitudes in the trends for the last 6000 years. Alkenone-based SST records show a similar pattern as the simulated annual mean SSTs, but the simulated SST trends underestimate the alkenone-based SST trends by a factor of two to five. For Mg/Ca, no significant relationship between model simulations and proxy reconstructions can be detected. We tested if such discrepancies can be caused by too simplistic interpretations of the proxy data. We tested different seasons and depths in the model to compare the proxy data trends, and can reconcile only part of the mismatches on a regional scale. We therefore considered the additional environmental factor changes in the planktonic organisms' habitat depth and a time-shift in the recording season to diagnose whether invoking those environmental factors can help reconciling the proxy records and the model simulations. We find that invoking shifts in the living season and habitat depth can remove some of the model-data discrepancies in SST trends. Regardless whether such adjustments in the environmental parameters during the Holocene are realistic, they indicate that when modeled temperature trends are set up to allow drastic shifts in the ecological behavior of planktonic organisms, they do not capture the full range of reconstructed SST trends. Our findings indicate that climate model and reconstructed temperature trends are to a large degree only qualitatively comparable, thus providing a challenge for the interpretation of proxy data as well as the models' sensitivity to orbital forcing.
Resumo:
The fate of key species, such as the barnacle Amphibalanus improvisus, in the course of global change is of particular interest since any change in their abundance and/or performance may entail community-wide effects. In the fluctuating Western Baltic, species typically experience a broad range of environmental conditions, which may preselect them to better cope with climate change. In this study, we examined the sensitivity of two crucial ontogenetic phases (naupliar, cypris) of the barnacle toward a range of temperature (12, 20, and 28°C) and salinity (5, 15, and 30 psu) combinations. Under all salinity treatments, nauplii developed faster at intermediate and high temperatures. Cyprid metamorphosis success, in contrast, was interactively impacted by temperature and salinity. Survival of nauplii decreased with increasing salinity under all temperature treatments. Highest settlement rates occurred at the intermediate temperature and salinity combination, i.e., 20°C and 15 psu. Settlement success of "naive" cyprids, i.e., when nauplii were raised in the absence of stress (20°C/15 psu), was less impacted by stressful temperature/salinity combinations than that of cyprids with a stress history. Here, settlement success was highest at 30 psu particularly at low and high temperatures. Surprisingly, larval survival was not highest under the conditions typical for the Kiel Fjord at the season of peak settlement (20°C/15 psu). The proportion of nauplii that ultimately transformed to attached juveniles was, however, highest under these "home" conditions. Overall, only particularly stressful combinations of temperature and salinity substantially reduced larval performance and development. Given more time for adaptation, the relatively smooth climate shifts predicted will probably not dramatically affect this species.