Modelled global ocean temperature from 6 ka to present


Autoria(s): Lohmann, Gerrit; Pfeiffer, Madlene; Laepple, Thomas; Leduc, Guillaume; Kim, Jung-Hyun
Data(s)

07/06/2013

Resumo

We compare the ocean temperature evolution of the Holocene as simulated by climate models and reconstructed from marine temperature proxies. This site provides informations about the Holocene temperature trends as simulated by the models. We use transient simulations from a coupled atmosphere-ocean general circulation model, as well as an ensemble of time slice simulations from the Paleoclimate Modelling Intercomparison Project. The general pattern of sea surface temperature (SST) in the models shows a high latitude cooling and a low latitude warming. The proxy dataset comprises a global compilation of marine alkenone- and Mg/Ca-derived SST estimates. Independently of the choice of the climate model, we observe significant mismatches between modelled and estimated SST amplitudes in the trends for the last 6000 years. Alkenone-based SST records show a similar pattern as the simulated annual mean SSTs, but the simulated SST trends underestimate the alkenone-based SST trends by a factor of two to five. For Mg/Ca, no significant relationship between model simulations and proxy reconstructions can be detected. We tested if such discrepancies can be caused by too simplistic interpretations of the proxy data. We tested different seasons and depths in the model to compare the proxy data trends, and can reconcile only part of the mismatches on a regional scale. We therefore considered the additional environmental factor changes in the planktonic organisms' habitat depth and a time-shift in the recording season to diagnose whether invoking those environmental factors can help reconciling the proxy records and the model simulations. We find that invoking shifts in the living season and habitat depth can remove some of the model-data discrepancies in SST trends. Regardless whether such adjustments in the environmental parameters during the Holocene are realistic, they indicate that when modeled temperature trends are set up to allow drastic shifts in the ecological behavior of planktonic organisms, they do not capture the full range of reconstructed SST trends. Our findings indicate that climate model and reconstructed temperature trends are to a large degree only qualitatively comparable, thus providing a challenge for the interpretation of proxy data as well as the models' sensitivity to orbital forcing.

Formato

application/zip, 3 datasets

Identificador

https://doi.pangaea.de/10.1594/PANGAEA.815309

doi:10.1594/PANGAEA.815309

Idioma(s)

en

Publicador

PANGAEA

Direitos

CC-BY: Creative Commons Attribution 3.0 Unported

Access constraints: unrestricted

Fonte

Supplement to: Lohmann, Gerrit; Pfeiffer, Madlene; Laepple, Thomas; Leduc, Guillaume; Kim, Jung-Hyun (2013): A model-data comparison of the Holocene global sea surface temperature evolution. Climate of the Past, 9(4), 1807-1839, doi:10.5194/cp-9-1807-2013

Palavras-Chave #File name; File size; Integrierte Analyse zwischeneiszeitlicher Klimadynamik; INTERDYNAMIK; NetCDF; Uniform resource locator/link to model result file; URL model
Tipo

Dataset