939 resultados para Galilean covariance
Resumo:
Factor analysis as frequent technique for multivariate data inspection is widely used also for compositional data analysis. The usual way is to use a centered logratio (clr) transformation to obtain the random vector y of dimension D. The factor model is then y = Λf + e (1) with the factors f of dimension k < D, the error term e, and the loadings matrix Λ. Using the usual model assumptions (see, e.g., Basilevsky, 1994), the factor analysis model (1) can be written as Cov(y) = ΛΛT + ψ (2) where ψ = Cov(e) has a diagonal form. The diagonal elements of ψ as well as the loadings matrix Λ are estimated from an estimation of Cov(y). Given observed clr transformed data Y as realizations of the random vector y. Outliers or deviations from the idealized model assumptions of factor analysis can severely effect the parameter estimation. As a way out, robust estimation of the covariance matrix of Y will lead to robust estimates of Λ and ψ in (2), see Pison et al. (2003). Well known robust covariance estimators with good statistical properties, like the MCD or the S-estimators (see, e.g. Maronna et al., 2006), rely on a full-rank data matrix Y which is not the case for clr transformed data (see, e.g., Aitchison, 1986). The isometric logratio (ilr) transformation (Egozcue et al., 2003) solves this singularity problem. The data matrix Y is transformed to a matrix Z by using an orthonormal basis of lower dimension. Using the ilr transformed data, a robust covariance matrix C(Z) can be estimated. The result can be back-transformed to the clr space by C(Y ) = V C(Z)V T where the matrix V with orthonormal columns comes from the relation between the clr and the ilr transformation. Now the parameters in the model (2) can be estimated (Basilevsky, 1994) and the results have a direct interpretation since the links to the original variables are still preserved. The above procedure will be applied to data from geochemistry. Our special interest is on comparing the results with those of Reimann et al. (2002) for the Kola project data
Resumo:
Exam questions and solutions in PDF
Resumo:
Exam questions and solutions in LaTex
Resumo:
Se examinaron factores auto-perceptivos (autoconcepto,autoeficacia) y actitudinales referentes a la estadísticapara determinar si las interacciones entre el perfil autoperceptivo/actitudinal del estudiante, el sexo y el área detitulación se asocian con el rendimiento académico y laansiedad estadística. En una muestra de estudiantes universitarioscolombianos (178 mujeres, 154 hombres), losanálisis de conglomerados revelaron dos perfiles autoperceptivos/actitudinales significativamente distintos,según los niveles bajos (perfil-1) o altos (perfil-2) en lasvariables de agrupación (autoconcepto, autoeficacia yactitudes hacia la estadística). Los análisis de varianzay de covarianza mostraron que el perfil auto-perceptivo/actitudinal de los estudiantes tiene un efecto significativoen el rendimiento y la ansiedad estadística, que varía porsexo y área de titulación. Los hallazgos contrastan conlos de otros estudios que examinan los mismos constructosseparadamente.
Resumo:
En el presente documento se descompone la estructura a términos de las tasas de interés de los bonos soberanos de EE.UU. y Colombia. Se utiliza un modelo afín de cuatro factores, donde el primero de ellos corresponde a un factor de pronóstico de los retornos y, los demás, a los tres primeros componentes principales de la matriz de varianza-covarianza de las tasas de interés. Para la descomposición de las tasas de interés de Colombia se utiliza el factor de pronóstico de EE.UU. para capturar efectos de spillovers. Se logra concluir que las tasas en EE.UU. no tienen un efecto sobre el nivel de tasas en Colombia pero sí influyen en los excesos de retorno esperado de los bonos y también existen efectos sobre los factores locales, aunque el factor determinante de la dinámica de las tasas locales es el “nivel”. De la descomposición se obtienen las expectativas de la tasa corta y la prima por vencimiento. En ese sentido, se observa que el valor de la prima por vencimiento y su volatilidad incrementa con el vencimiento y que este valor ha venido disminuyendo en el tiempo.
Resumo:
El presente trabajo intenta estimar si las empresas emplean estratégicamente la deuda para limitar la entrada de potenciales rivales. Mediante la metodología de Método Generalizado de Momentos (GMM) se evalúa el efecto que tienen los activos específicos, la cuota de mercado y el tamaño, como proxies de las rentas del mercado, y las barreras de entrada sobre los niveles de endeudamiento, a nivel de empresa para Colombia, durante 1995-2003. Se encuentra que las empresas utilizan los activos específicos para limitar la entrada al mercado y que el endeudamiento decrece a medida que las empresas aumentan su cuota en el mercado
Resumo:
We study the role of natural resource windfalls in explaining the efficiency of public expenditures. Using a rich dataset of expenditures and public good provision for 1,836 municipalities in Peru for period 2001-2010, we estimate a non-monotonic relationship between the efficiency of public good provision and the level of natural resource transfers. Local governments that were extremely favored by the boom of mineral prices were more efficient in using fiscal windfalls whereas those benefited with modest transfers were more inefficient. These results can be explained by the increase in political competition associated with the boom. However, the fact that increases in efficiency were related to reductions in public good provision casts doubts about the beneficial effects of political competition in promoting efficiency.
Resumo:
Els estudis de supervivència s'interessen pel temps que passa des de l'inici de l'estudi (diagnòstic de la malaltia, inici del tractament,...) fins que es produeix l'esdeveniment d'interès (mort, curació, millora,...). No obstant això, moltes vegades aquest esdeveniment s'observa més d'una vegada en un mateix individu durant el període de seguiment (dades de supervivència multivariant). En aquest cas, és necessari utilitzar una metodologia diferent a la utilitzada en l'anàlisi de supervivència estàndard. El principal problema que l'estudi d'aquest tipus de dades comporta és que les observacions poden no ser independents. Fins ara, aquest problema s'ha solucionat de dues maneres diferents en funció de la variable dependent. Si aquesta variable segueix una distribució de la família exponencial s'utilitzen els models lineals generalitzats mixtes (GLMM); i si aquesta variable és el temps, variable amb una distribució de probabilitat no pertanyent a aquesta família, s'utilitza l'anàlisi de supervivència multivariant. El que es pretén en aquesta tesis és unificar aquests dos enfocs, és a dir, utilitzar una variable dependent que sigui el temps amb agrupacions d'individus o d'observacions, a partir d'un GLMM, amb la finalitat d'introduir nous mètodes pel tractament d'aquest tipus de dades.
Resumo:
The motion of a car is described using a stochastic model in which the driving processes are the steering angle and the tangential acceleration. The model incorporates exactly the kinematic constraint that the wheels do not slip sideways. Two filters based on this model have been implemented, namely the standard EKF, and a new filter (the CUF) in which the expectation and the covariance of the system state are propagated accurately. Experiments show that i) the CUF is better than the EKF at predicting future positions of the car; and ii) the filter outputs can be used to control the measurement process, leading to improved ability to recover from errors in predictive tracking.
Resumo:
Two wavelet-based control variable transform schemes are described and are used to model some important features of forecast error statistics for use in variational data assimilation. The first is a conventional wavelet scheme and the other is an approximation of it. Their ability to capture the position and scale-dependent aspects of covariance structures is tested in a two-dimensional latitude-height context. This is done by comparing the covariance structures implied by the wavelet schemes with those found from the explicit forecast error covariance matrix, and with a non-wavelet- based covariance scheme used currently in an operational assimilation scheme. Qualitatively, the wavelet-based schemes show potential at modeling forecast error statistics well without giving preference to either position or scale-dependent aspects. The degree of spectral representation can be controlled by changing the number of spectral bands in the schemes, and the least number of bands that achieves adequate results is found for the model domain used. Evidence is found of a trade-off between the localization of features in positional and spectral spaces when the number of bands is changed. By examining implied covariance diagnostics, the wavelet-based schemes are found, on the whole, to give results that are closer to diagnostics found from the explicit matrix than from the nonwavelet scheme. Even though the nature of the covariances has the right qualities in spectral space, variances are found to be too low at some wavenumbers and vertical correlation length scales are found to be too long at most scales. The wavelet schemes are found to be good at resolving variations in position and scale-dependent horizontal length scales, although the length scales reproduced are usually too short. The second of the wavelet-based schemes is often found to be better than the first in some important respects, but, unlike the first, it has no exact inverse transform.
Resumo:
Data assimilation is a sophisticated mathematical technique for combining observational data with model predictions to produce state and parameter estimates that most accurately approximate the current and future states of the true system. The technique is commonly used in atmospheric and oceanic modelling, combining empirical observations with model predictions to produce more accurate and well-calibrated forecasts. Here, we consider a novel application within a coastal environment and describe how the method can also be used to deliver improved estimates of uncertain morphodynamic model parameters. This is achieved using a technique known as state augmentation. Earlier applications of state augmentation have typically employed the 4D-Var, Kalman filter or ensemble Kalman filter assimilation schemes. Our new method is based on a computationally inexpensive 3D-Var scheme, where the specification of the error covariance matrices is crucial for success. A simple 1D model of bed-form propagation is used to demonstrate the method. The scheme is capable of recovering near-perfect parameter values and, therefore, improves the capability of our model to predict future bathymetry. Such positive results suggest the potential for application to more complex morphodynamic models.
Resumo:
Diffuse reflectance spectroscopy (DRS) is increasingly being used to predict numerous soil physical, chemical and biochemical properties. However, soil properties and processes vary at different scales and, as a result, relationships between soil properties often depend on scale. In this paper we report on how the relationship between one such property, cation exchange capacity (CEC), and the DRS of the soil depends on spatial scale. We show this by means of a nested analysis of covariance of soils sampled on a balanced nested design in a 16 km × 16 km area in eastern England. We used principal components analysis on the DRS to obtain a reduced number of variables while retaining key variation. The first principal component accounted for 99.8% of the total variance, the second for 0.14%. Nested analysis of the variation in the CEC and the two principal components showed that the substantial variance components are at the > 2000-m scale. This is probably the result of differences in soil composition due to parent material. We then developed a model to predict CEC from the DRS and used partial least squares (PLS) regression do to so. Leave-one-out cross-validation results suggested a reasonable predictive capability (R2 = 0.71 and RMSE = 0.048 molc kg− 1). However, the results from the independent validation were not as good, with R2 = 0.27, RMSE = 0.056 molc kg− 1 and an overall correlation of 0.52. This would indicate that DRS may not be useful for predictions of CEC. When we applied the analysis of covariance between predicted and observed we found significant scale-dependent correlations at scales of 50 and 500 m (0.82 and 0.73 respectively). DRS measurements can therefore be useful to predict CEC if predictions are required, for example, at the field scale (50 m). This study illustrates that the relationship between DRS and soil properties is scale-dependent and that this scale dependency has important consequences for prediction of soil properties from DRS data
Resumo:
A new spectral-based approach is presented to find orthogonal patterns from gridded weather/climate data. The method is based on optimizing the interpolation error variance. The optimally interpolated patterns (OIP) are then given by the eigenvectors of the interpolation error covariance matrix, obtained using the cross-spectral matrix. The formulation of the approach is presented, and the application to low-dimension stochastic toy models and to various reanalyses datasets is performed. In particular, it is found that the lowest-frequency patterns correspond to largest eigenvalues, that is, variances, of the interpolation error matrix. The approach has been applied to the Northern Hemispheric (NH) and tropical sea level pressure (SLP) and to the Indian Ocean sea surface temperature (SST). Two main OIP patterns are found for the NH SLP representing respectively the North Atlantic Oscillation and the North Pacific pattern. The leading tropical SLP OIP represents the Southern Oscillation. For the Indian Ocean SST, the leading OIP pattern shows a tripole-like structure having one sign over the eastern and north- and southwestern parts and an opposite sign in the remaining parts of the basin. The pattern is also found to have a high lagged correlation with the Niño-3 index with 6-months lag.
Resumo:
Accurate estimation of the soil water balance (SWB) is important for a number of applications (e.g. environmental, meteorological, agronomical and hydrological). The objective of this study was to develop and test techniques for the estimation of soil water fluxes and SWB components (particularly infiltration, evaporation and drainage below the root zone) from soil water records. The work presented here is based on profile soil moisture data measured using dielectric methods, at 30-min resolution, at an experimental site with different vegetation covers (barley, sunflower and bare soil). Estimates of infiltration were derived by assuming that observed gains in the soil profile water content during rainfall were due to infiltration. Inaccuracies related to diurnal fluctuations present in the dielectric-based soil water records are resolved by filtering the data with adequate threshold values. Inconsistencies caused by the redistribution of water after rain events were corrected by allowing for a redistribution period before computing water gains. Estimates of evaporation and drainage were derived from water losses above and below the deepest zero flux plane (ZFP), respectively. The evaporation estimates for the sunflower field were compared to evaporation data obtained with an eddy covariance (EC) system located elsewhere in the field. The EC estimate of total evaporation for the growing season was about 25% larger than that derived from the soil water records. This was consistent with differences in crop growth (based on direct measurements of biomass, and field mapping of vegetation using laser altimetry) between the EC footprint and the area of the field used for soil moisture monitoring. Copyright (c) 2007 John Wiley & Sons, Ltd.
Resumo:
It has been generally accepted that the method of moments (MoM) variogram, which has been widely applied in soil science, requires about 100 sites at an appropriate interval apart to describe the variation adequately. This sample size is often larger than can be afforded for soil surveys of agricultural fields or contaminated sites. Furthermore, it might be a much larger sample size than is needed where the scale of variation is large. A possible alternative in such situations is the residual maximum likelihood (REML) variogram because fewer data appear to be required. The REML method is parametric and is considered reliable where there is trend in the data because it is based on generalized increments that filter trend out and only the covariance parameters are estimated. Previous research has suggested that fewer data are needed to compute a reliable variogram using a maximum likelihood approach such as REML, however, the results can vary according to the nature of the spatial variation. There remain issues to examine: how many fewer data can be used, how should the sampling sites be distributed over the site of interest, and how do different degrees of spatial variation affect the data requirements? The soil of four field sites of different size, physiography, parent material and soil type was sampled intensively, and MoM and REML variograms were calculated for clay content. The data were then sub-sampled to give different sample sizes and distributions of sites and the variograms were computed again. The model parameters for the sets of variograms for each site were used for cross-validation. Predictions based on REML variograms were generally more accurate than those from MoM variograms with fewer than 100 sampling sites. A sample size of around 50 sites at an appropriate distance apart, possibly determined from variograms of ancillary data, appears adequate to compute REML variograms for kriging soil properties for precision agriculture and contaminated sites. (C) 2007 Elsevier B.V. All rights reserved.