986 resultados para GALLIUM ANTIMONIDE
Resumo:
Distribution, size, mineral, and chemical compositions of ferromanganese micronodules (FMMNs) and chemical composition of host sediments were examined in a series of red clay samples with ages from Eocene to the present at Ocean Drilling Program Leg 199, Site 1216, south of the Molokai Fracture Zone in the Central Pacific Basin. The number of FMMNs changed drastically throughout the 40-m-long red clay intervals. FMMNs are abundant in the upper 9 m of core, decrease between 9 and 25 meters below seafloor (mbsf) with depth, and are very rare from 30 to 40 mbsf. Chemical composition of FMMNs showed high Mn/Fe ratios and Ni and Cu contents and a distinct positive Ce anomaly because of the existence of buserite. This suggests that FMMNs in the red clay from 25 mbsf to the top of the cored interval were deposited continuously in an oxic diagenetic bottom environment. The red clay below 30 mbsf with higher Mn contents contains few FMMNs but abundant tiny Mn particles within brown silicates coated by Fe (oxy-hydro)oxides. This indicates that the mode of manganese deposition changed between 25 and 30 mbsf.
Resumo:
Lake La Thuile, in the Northern French Prealps (874 m a.s.l.), provides an 18 m long sedimentary sequence spanning the entire Lateglacial/Holocene period. The high resolution multi-proxy (sedimentological, palynological, geochemical) analysis of the uppermost 6.2 meters reveals the Holocene dynamics of erosion in the catchment in response to landscape modifications. The mountain belt is at relevant altitude to study past human activities and the watershed is sufficiently disconnected from large valleys to capture a local sedimentary signal. From 12,000 to 10,000 cal. BP (10 to 8 ka cal. BC), the onset of hardwood species triggered a drop in erosion following the Lateglacial/Holocene transition. From 10,000 to 4500 cal. BP (8 to 2.5 ka cal. BC), the forest became denser and favored slope stabilization while erosion processes were very weak. A first erosive phase was initiated at ca . 4500 cal. BP without evidence of human presence in the catchment. Then, the forest declined at approximately 3000 cal. BP, suggesting the first human influence on the landscape. Two other erosive phases are related to anthropic activities: approximately 2500 cal. BP (550 cal. BC) during the Roman period and after 1600 cal. BP (350 cal. AD) with a substantial accentuation in the Middle Ages. In contrast, the lower erosion produced during the Little Ice Age, when climate deteriorations are generally considered to result in an increased erosion signal in this region, suggests that anthropic activities dominated the erosive processes and completely masked the natural effects of climate on erosion in the late Holocene.
Resumo:
Empirical relationships between physical properties determined non-destructively by core logging devices and calibrated by carbonate and opal measurements determined on discrete samples allow extraction of carbonate and opal records from the non-destructive measurements in biogenic settings. Contents of detrital material can be calculated as a residual. For carbonate and opal the correlation coefficients (r) are 0.954 and ?0.916 for sediment density, ?0.816 and 0.845 for compressional-wave velocity, 0.908 and ?0.942 for acoustic impedance, and 0.886 and ?0.865 for sediment color (lightness). Carbonate contents increase in concert with increasing density and acoustic impedance, decreasing velocity and lighter sediment color. The opposite is true for opal. The advantages of deriving the sediment composition quantitatively from core logging are: (i) sampling resolution is increased significantly, (ii) non-destructive data can be gathered rapidly, and (iii) laboratory work on discrete samples can be reduced. Applied to paleoceanographic problems, this method offers the opportunity of precise stratigraphic correlations and of studying processes related to biogenic sedimentation in more detail. Density is most promising because it is most strongly affected by changes in composition.
Resumo:
During Leg 136 drilling was conducted at two sites in pelagic sediments of the north central Pacific Ocean. In this report, pore-water analyses for major seawater constituents, alkalinity, ammonia, nitrate, phosphate, silica, Ba, Fe, Li, Mn, and Sr are presented. Although concentration gradients are generally weak, resulting from slow sedimentation and concomitant diffusive communication with overlying water, there is evidence of sediment/pore-water interactions, associated sediment diagenesis, and formation of authigenic minerals. Bulk major and trace element compositions of the sediments are consistent with reactions inferred to occur within the sediments and with the lithology and mineralogy. Elemental compositions of the sediments are not strongly affected by diagenesis and are primarily related to the dominant mineralogy. Sediments are typical of deep ocean pelagic settings with a significant contribution from the alteration of volcanic ash and the formation of zeolites. Sedimentary rare earth element patterns also provide evidence of active scavenging processes by Mn and Fe oxide phases in the deeper sediments at Site 842.
Resumo:
The complete Paleocene section begins with the basal Tertiary Globigerina eugubina Zone. This zone occurs at 465A-3-3, 4 cm to 465A-3-3, 144 cm and belongs to Lithologic Unit I (Site 465 report, this volume), a homogeneous, white, moderately to highly disturbed nannofossil ooze.
Resumo:
Basalt samples recovered from the lowermost 37 m of Leg 105 Hole 647A in the Labrador Sea are fine- to medium grained, have microphenocrysts of clinopyroxene, and show little evidence of alteration. Chemically, these rocks are low potassium (0.01-0.09 wt% K20), olivine- to quartz-normative tholeiites that are also depleted in other incompatible elements. In terms of many of the incompatible trace elements, the Labrador Sea samples are similar both to iV-type midocean ridge basalts (MORBs) and to the terrestrial Paleocene volcanic rocks in the Davis Strait region of Baffin Island and West Greenland. However, significant differences are found in their strontium and neodymium isotope systematics. Hole 647A samples are more depleted in epsilon-Nd (+9.3) and are anomalously rich in 87Sr/86Sr (0.7040) relative to the Davis Strait basalts (epsilon-Nd +2.54 to + 8.97; mean 87Sr/86Sr, 0.7034). We conclude that the Hole 647A and Davis Strait basalts may have been derived from a similar depleted mantle source composition. In addition, the Davis Strait magmas were generated from mantle of more than one composition. We also suggest that there is no geochemical evidence from the Hole 647A samples to support or to refute the existence of foundered continental crust in the Labrador Sea.
Resumo:
Hot brines in depressions of the central Red Sea contain thousands of times more iron, manganese and other metals than . After removal of salts, approximately half of sediments from these depressions consists of iron hydroxides and they are enriched in zinc, copper, lead and molybdenum. Hydrothermal deposits with the same complex of metals, located along the coast of the Red Sea, are correlated with faults and may be due to occurrences of Tertiary volcanism. Brines of similar composition are known in the Cheleken Peninsula. Certain geological and geochemical data indicate that such brines are of relatively deep origin.
Resumo:
We have studied the sedimentary and basaltic inputs of lithium to subduction zones. Various sediments from DSDP and ODP drill cores in front of the Mariana, South Sandwich, Banda, East Sunda and Lesser Antilles island arcs have been analysed and show highly variable Li contents and d7Li values. The sediment piles in front of the Mariana and South Sandwich arcs largely consist of pelagic sediments (clays and oozes). The pelagic clays have high Li contents (up to 57.3 ppm) and Li isotope compositions ranging from +1.3? to +4.1?. The oozes have lower Li contents (7.3-16 ppm) with d7Li values of the diatom oozes from the South Sandwich lower (+2.8? to +3.2?) than those of the radiolarian oozes from the Mariana arc (+8.1? to +14.5?). Mariana sediment also contains a significant portion of volcanogenic material, which is characterised by a moderate Li content (14 ppm) and a relatively heavy isotope composition (+6.4?). Sediments from the Banda and Lesser Antilles contain considerable amounts of continental detritus, and have high Li contents (up to 74.3 ppm) and low d7Li values (around 0?), caused by weathering of continental bedrock. East Sunda sediments largely consist of calcareous oozes. These carbonate sediments display intermediate to high Li contents (2.4-41.9 ppm) and highly variable d7Li values (-1.6? to +12.8?). Basaltic oceanic crust samples from worldwide DSDP and ODP drill cores are characterised by enrichment of Li compared to fresh MORB (6.6-33.1 vs. 3.6-7.5 ppm, respectively), and show a large range in Li isotope compositions (+1.7? to +11.8?). The elemental and isotopic enrichment of Li in altered basalts is due to the uptake of isotopically heavy seawater Li during weathering. However, old oceanic crust samples from Sites 417/418 exhibit lighter Li isotope compositions compared to young basaltic crust samples from Sites 332B and 504B. This lighter Li isotope signature in old crust is unexpected and further research is needed to explore this issue.