954 resultados para Fire safety design
Resumo:
Partially encased columns have significant fire resistant. However, it is not possible to assess the fire resistance of such members simply by considering the temperature of the steel. The presence of concrete increases the mass and thermal inertia of the member and the variation of temperature within the cross section, in both the steel and concrete components. The annex G of EN1994-1-2 allows to calculate the load carrying capacity of partially encased columns, for a specific fire rating time, considering the balanced summation method. New formulas will be used to calculate the plastic resistance to axial compression and the effective flexural stiffness. These two parameters are used to calculate the buckling resistance. The finite element method is used to compare the results of the elastic critical load for different fire ratings of 30 and 60 minutes. The buckling resistance is also calculated by the finite element method, using an incremental and iterative procedure. This buckling resistance is also compared with the simple calculation method, evaluating the design buckling curve that best fits the results.
Resumo:
Motion planning, or trajectory planning, commonly refers to a process of converting high-level task specifications into low-level control commands that can be executed on the system of interest. For different applications, the system will be different. It can be an autonomous vehicle, an Unmanned Aerial Vehicle(UAV), a humanoid robot, or an industrial robotic arm. As human machine interaction is essential in many of these systems, safety is fundamental and crucial. Many of the applications also involve performing a task in an optimal manner within a given time constraint. Therefore, in this thesis, we focus on two aspects of the motion planning problem. One is the verification and synthesis of the safe controls for autonomous ground and air vehicles in collision avoidance scenarios. The other part focuses on the high-level planning for the autonomous vehicles with the timed temporal constraints. In the first aspect of our work, we first propose a verification method to prove the safety and robustness of a path planner and the path following controls based on reachable sets. We demonstrate the method on quadrotor and automobile applications. Secondly, we propose a reachable set based collision avoidance algorithm for UAVs. Instead of the traditional approaches of collision avoidance between trajectories, we propose a collision avoidance scheme based on reachable sets and tubes. We then formulate the problem as a convex optimization problem seeking control set design for the aircraft to avoid collision. We apply our approach to collision avoidance scenarios of quadrotors and fixed-wing aircraft. In the second aspect of our work, we address the high level planning problems with timed temporal logic constraints. Firstly, we present an optimization based method for path planning of a mobile robot subject to timed temporal constraints, in a dynamic environment. Temporal logic (TL) can address very complex task specifications such as safety, coverage, motion sequencing etc. We use metric temporal logic (MTL) to encode the task specifications with timing constraints. We then translate the MTL formulae into mixed integer linear constraints and solve the associated optimization problem using a mixed integer linear program solver. We have applied our approach on several case studies in complex dynamical environments subjected to timed temporal specifications. Secondly, we also present a timed automaton based method for planning under the given timed temporal logic specifications. We use metric interval temporal logic (MITL), a member of the MTL family, to represent the task specification, and provide a constructive way to generate a timed automaton and methods to look for accepting runs on the automaton to find an optimal motion (or path) sequence for the robot to complete the task.
Resumo:
Dissertação de Mestrado para obtenção do grau de Mestre em Design de Produto, apresentada na Universidade de Lisboa - Faculdade de Arquitectura.
Resumo:
By providing vehicle-to-vehicle and vehicle-to-infrastructure wireless communications, vehicular ad hoc networks (VANETs), also known as the “networks on wheels”, can greatly enhance traffic safety, traffic efficiency and driving experience for intelligent transportation system (ITS). However, the unique features of VANETs, such as high mobility and uneven distribution of vehicular nodes, impose critical challenges of high efficiency and reliability for the implementation of VANETs. This dissertation is motivated by the great application potentials of VANETs in the design of efficient in-network data processing and dissemination. Considering the significance of message aggregation, data dissemination and data collection, this dissertation research targets at enhancing the traffic safety and traffic efficiency, as well as developing novel commercial applications, based on VANETs, following four aspects: 1) accurate and efficient message aggregation to detect on-road safety relevant events, 2) reliable data dissemination to reliably notify remote vehicles, 3) efficient and reliable spatial data collection from vehicular sensors, and 4) novel promising applications to exploit the commercial potentials of VANETs. Specifically, to enable cooperative detection of safety relevant events on the roads, the structure-less message aggregation (SLMA) scheme is proposed to improve communication efficiency and message accuracy. The scheme of relative position based message dissemination (RPB-MD) is proposed to reliably and efficiently disseminate messages to all intended vehicles in the zone-of-relevance in varying traffic density. Due to numerous vehicular sensor data available based on VANETs, the scheme of compressive sampling based data collection (CS-DC) is proposed to efficiently collect the spatial relevance data in a large scale, especially in the dense traffic. In addition, with novel and efficient solutions proposed for the application specific issues of data dissemination and data collection, several appealing value-added applications for VANETs are developed to exploit the commercial potentials of VANETs, namely general purpose automatic survey (GPAS), VANET-based ambient ad dissemination (VAAD) and VANET based vehicle performance monitoring and analysis (VehicleView). Thus, by improving the efficiency and reliability in in-network data processing and dissemination, including message aggregation, data dissemination and data collection, together with the development of novel promising applications, this dissertation will help push VANETs further to the stage of massive deployment.
Resumo:
A group of four applications including Top 20 Pedestrian Crash Locations: This application is designed to display top 20 pedestrian crash locations into both map- view and detailed information view. FDOT Crash Reporting Tool: This application is designed to simplify the usage and sharing of CAR data. The application can load raw data from CAR and display it into a web map interface. FDOT Online Document Portal: This application is designed for FDOT project managers to be able to share and manage documents through a user friendly, GIS enable web interface GIS Data Collection for Pedestrian Safety Tool: FIU-GIS Center was responsible for data collection and processing work for the project of Pedestrian Safety Tool Project. The outcome of this task is present by a simple web-GIS application design to host GIS by projects.
Resumo:
Neonatal seizures are common in the neonatal intensive care unit. Clinicians treat these seizures with several anti-epileptic drugs (AEDs) to reduce seizures in a neonate. Current AEDs exhibit sub-optimal efficacy and several randomized control trials (RCT) of novel AEDs are planned. The aim of this study was to measure the influence of trial design on the required sample size of a RCT. We used seizure time courses from 41 term neonates with hypoxic ischaemic encephalopathy to build seizure treatment trial simulations. We used five outcome measures, three AED protocols, eight treatment delays from seizure onset (Td) and four levels of trial AED efficacy to simulate different RCTs. We performed power calculations for each RCT design and analysed the resultant sample size. We also assessed the rate of false positives, or placebo effect, in typical uncontrolled studies. We found that the false positive rate ranged from 5 to 85% of patients depending on RCT design. For controlled trials, the choice of outcome measure had the largest effect on sample size with median differences of 30.7 fold (IQR: 13.7–40.0) across a range of AED protocols, Td and trial AED efficacy (p<0.001). RCTs that compared the trial AED with positive controls required sample sizes with a median fold increase of 3.2 (IQR: 1.9–11.9; p<0.001). Delays in AED administration from seizure onset also increased the required sample size 2.1 fold (IQR: 1.7–2.9; p<0.001). Subgroup analysis showed that RCTs in neonates treated with hypothermia required a median fold increase in sample size of 2.6 (IQR: 2.4–3.0) compared to trials in normothermic neonates (p<0.001). These results show that RCT design has a profound influence on the required sample size. Trials that use a control group, appropriate outcome measure, and control for differences in Td between groups in analysis will be valid and minimise sample size.
Resumo:
Hemophilic arthropathy limits daily life activities of patients with hemophilia, presenting with clinical manifestations such as chronic pain, limited mobility, or muscular atrophy. Although physical therapy is considered essential for these patients, few clinical studies have demonstrated the efficacy and safety of the various physiotherapy techniques. Physical therapy may be useful for treating hemophilic arthropathy by applying safe and effective techniques. However, it is necessary to create protocols for possible treatments to avoid the risk of bleeding in these patients. This article describes the musculoskeletal pathology of hemophilic arthropathy and characteristics of fascial therapy. This systematic protocol for treatment by fascial therapy of knee and ankle arthropathy in patients with hemophilia provides an analysis of the techniques that, depending on their purpose and methodology, can be used in these patients. Similarly, the protocol's applicability is analyzed and the steps to be followed in future research studies are described. Fascial therapy is a promising physiotherapy technique for treating fascial tissue and joint contractures in patients with hemophilic arthropathy. More research is needed to assess the efficacy and safety of this intervention in patients with hemophilia, particularly with randomized multicenter clinical trials
Resumo:
Heavy Liquid Metal Cooled Reactors are among the concepts, fostered by the GIF, as potentially able to comply with stringent safety, economical, sustainability, proliferation resistance and physical protection requirements. The increasing interest around these innovative systems has highlighted the lack of tools specifically dedicated to their core design stage. The present PhD thesis summarizes the three years effort of, partially, closing the mentioned gap, by rationally defining the role of codes in core design and by creating a development methodology for core design-oriented codes (DOCs) and its subsequent application to the most needed design areas. The covered fields are, in particular, the fuel assembly thermal-hydraulics and the fuel pin thermo-mechanics. Regarding the former, following the established methodology, the sub-channel code ANTEO+ has been conceived. Initially restricted to the forced convection regime and subsequently extended to the mixed one, ANTEO+, via a thorough validation campaign, has been demonstrated a reliable tool for design applications. Concerning the fuel pin thermo-mechanics, the will to include safety-related considerations at the outset of the pin dimensioning process, has given birth to the safety-informed DOC TEMIDE. The proposed DOC development methodology has also been applied to TEMIDE; given the complex interdependence patterns among the numerous phenomena involved in an irradiated fuel pin, to optimize the code final structure, a sensitivity analysis has been performed, in the anticipated application domain. The development methodology has also been tested in the verification and validation phases; the latter, due to the low availability of experiments truly representative of TEMIDE's application domain, has only been a preliminary attempt to test TEMIDE's capabilities in fulfilling the DOC requirements upon which it has been built. In general, the capability of the proposed development methodology for DOCs in delivering tools helping the core designer in preliminary setting the system configuration has been proven.
Design and Development of a Research Framework for Prototyping Control Tower Augmented Reality Tools
Resumo:
The purpose of the air traffic management system is to ensure the safe and efficient flow of air traffic. Therefore, while augmenting efficiency, throughput and capacity in airport operations, attention has rightly been placed on doing it in a safe manner. In the control tower, many advances in operational safety have come in the form of visualization tools for tower controllers. However, there is a paradox in developing such systems to increase controllers' situational awareness: by creating additional computer displays, the controller's vision is pulled away from the outside view and the time spent looking down at the monitors is increased. This reduces their situational awareness by forcing them to mentally and physically switch between the head-down equipment and the outside view. This research is based on the idea that augmented reality may be able to address this issue. The augmented reality concept has become increasingly popular over the past decade and is being proficiently used in many fields, such as entertainment, cultural heritage, aviation, military & defense. This know-how could be transferred to air traffic control with a relatively low effort and substantial benefits for controllers’ situation awareness. Research on this topic is consistent with SESAR objectives of increasing air traffic controllers’ situation awareness and enable up to 10 % of additional flights at congested airports while still increasing safety and efficiency. During the Ph.D., a research framework for prototyping augmented reality tools was set up. This framework consists of methodological tools for designing the augmented reality overlays, as well as of hardware and software equipment to test them. Several overlays have been designed and implemented in a simulated tower environment, which is a virtual reconstruction of Bologna airport control tower. The positive impact of such tools was preliminary assessed by means of the proposed methodology.
Resumo:
In the last decades, global food supply chains had to deal with the increasing awareness of the stakeholders and consumers about safety, quality, and sustainability. In order to address these new challenges for food supply chain systems, an integrated approach to design, control, and optimize product life cycle is required. Therefore, it is essential to introduce new models, methods, and decision-support platforms tailored to perishable products. This thesis aims to provide novel practice-ready decision-support models and methods to optimize the logistics of food items with an integrated and interdisciplinary approach. It proposes a comprehensive review of the main peculiarities of perishable products and the environmental stresses accelerating their quality decay. Then, it focuses on top-down strategies to optimize the supply chain system from the strategical to the operational decision level. Based on the criticality of the environmental conditions, the dissertation evaluates the main long-term logistics investment strategies to preserve products quality. Several models and methods are proposed to optimize the logistics decisions to enhance the sustainability of the supply chain system while guaranteeing adequate food preservation. The models and methods proposed in this dissertation promote a climate-driven approach integrating climate conditions and their consequences on the quality decay of products in innovative models supporting the logistics decisions. Given the uncertain nature of the environmental stresses affecting the product life cycle, an original stochastic model and solving method are proposed to support practitioners in controlling and optimizing the supply chain systems when facing uncertain scenarios. The application of the proposed decision-support methods to real case studies proved their effectiveness in increasing the sustainability of the perishable product life cycle. The dissertation also presents an industry application of a global food supply chain system, further demonstrating how the proposed models and tools can be integrated to provide significant savings and sustainability improvements.
Resumo:
In this thesis, we deal with the design of experiments in the drug development process, focusing on the design of clinical trials for treatment comparisons (Part I) and the design of preclinical laboratory experiments for proteins development and manufacturing (Part II). In Part I we propose a multi-purpose design methodology for sequential clinical trials. We derived optimal allocations of patients to treatments for testing the efficacy of several experimental groups by also taking into account ethical considerations. We first consider exponential responses for survival trials and we then present a unified framework for heteroscedastic experimental groups that encompasses the general ANOVA set-up. The very good performance of the suggested optimal allocations, in terms of both inferential and ethical characteristics, are illustrated analytically and through several numerical examples, also performing comparisons with other designs proposed in the literature. Part II concerns the planning of experiments for processes composed of multiple steps in the context of preclinical drug development and manufacturing. Following the Quality by Design paradigm, the objective of the multi-step design strategy is the definition of the manufacturing design space of the whole process and, as we consider the interactions among the subsequent steps, our proposal ensures the quality and the safety of the final product, by enabling more flexibility and process robustness in the manufacturing.
Resumo:
The trend related to the turnover of internal combustion engine vehicles with EVs goes by the name of electrification. The push electrification experienced in the last decade is linked to the still ongoing evolution in power electronics technology for charging systems. This is the reason why an evolution in testing strategies and testing equipment is crucial too. The project this dissertation is based on concerns the investigation of a new EV simulator design. that optimizes the structure of the testing equipment used by the company who commissioned this work. Project requirements can be summarized in the following two points: space occupation reduction and parallel charging implementation. Some components were completely redesigned, and others were substituted with equivalent ones that could perform the same tasks. In this way it was possible to reduce the space occupation of the simulator, as well as to increase the efficiency of the testing device. Moreover, the possibility of conjugating different charging simulations could be investigated by parallelly launching two testing procedures on a unique machine, properly predisposed for supporting the two charging protocols used. On the back of the results achieved in the body of this dissertation, a new design for the EV simulator was proposed. In this way, space reduction was obtained, and space occupation efficiency was improved with the proposed new design. The testing device thus resulted to be way more compact, enabling to gain in safety and productivity, along with a 25% cost reduction. Furthermore, parallel charging was implemented in the proposed new design since the conducted tests clearly showed the feasibility of parallel charging sessions. The results presented in this work can thus be implemented to build the first prototype of the new EV simulator.
Resumo:
Our cities are constantly evolving, and the necessity to improve the condition and safety of the urban infrastructures is fundamental. However, on the roads, the specific needs of cyclists and pedestrians are often neglected. The Vulnerable Road Users (VRUs), among whom cyclists and pedestrians are, rarely benefit from the most innovative safety measures. Inspired by playgrounds and aiming to reduce VRUs injuries, the Impact-Absorbing Pavements (IAP) developed as novel sidewalks, and bike lanes surface layers may help decrease injuries, fatalities, and the related societal costs. To achieve this goal, the End-of-Life Tyres (ELTs) crumb rubber (CR) is used as a primary resource, bringing its elastic properties into the surface layer. The thesis is divided into five main chapters. The first concerns the formulation and the definition of a feasible mix. The second explores the mechanical and environmental properties in detail, and the ageing effect is also assessed. The third describes the modelling of the material to simulate accidents and measure the injury reduction, especially on the head. The fourth chapter is reserved for the field trial. The last gives some perspectives on the research and proposes a way to optimize and improve the data and results collected during the doctoral research. It was observed that the specimens made with cold protocol have noticeable performances and reduce the overall carbon footprint impact of this material. The material modelling and the accident simulation proved the performance of the IAP against head injuries, and the field trial confirmed the good results obtained in the laboratory for the cold-made material. Finally, the outcomes of this thesis opened many prospective to the IAP development, such as the use of a plant-based binder or recycled aggregates and gave a positive prospect of an innovative material to the urban road infrastructures.
Resumo:
Existing bridges built in the last 50 years face challenges due to states far different than those envisaged when they were designed, due to increased loads, ageing of materials, and poor maintenance. For post-tensioned bridges, the need emerged for reliable engineering tools for the evaluation of their capacity in case of steel corrosion due to lack of mortar injection. This can lead to sudden brittle collapses, highlighting the need for proper maintenance and monitoring. This thesis proposes a peak strength model for corroded strands, introducing a “group coefficient” that aims at considering corrosion variability in the wires constituting the strands. The application of the introduced model in a deterministic approach leads to the proposal of strength curves for corroded strands, which represent useful engineering tools for estimating their maximum strength considering both geometry of the corrosion and steel material parameters. Together with the proposed ultimate displacement curves, constitutive laws of the steel material reduced by the effects of corrosion can be obtained. The effects of corroded strands on post-tensioned beams can be evaluated through the reduced bending moment-curvature diagram accounting for these reduced stress-strain relationships. The application of the introduced model in a probabilistic approach allows to estimate peak strength probability functions and consecutive design-oriented safety factors to consider corrosion effects in safety assessment verifications. Both approaches consider two procedures that are based on the knowledge level of the corrosion in the strands. On the sidelines of this main research line, this thesis also presents a study of a seismic upgrading intervention of a case-study bridge through HDRB isolators providing a simplified procedure for the identification of the correct device. The study also investigates the effects due to the variability of the shear modulus of the rubber material of the HDRB isolators on the structural response of the isolated bridge.
Resumo:
Due to the interest of general public and the industrial stakeholders, new challenges and demands are rising in aircraft design. The sustainability is taking its place amongst more traditional design factors, such as safety, performances and costs. Sustainability is both environmental and economic, and among the factors contributing to economic sustainability, there is also passengers' comfort. In order to win these two challenges, they must be considered in the early stages of aircraft design. In this work, the focus is on emissions generation and acoustic comfort, aiming at reducing pollution and internal noise in the preliminary design phases. These results can be achieved with both unconventional aircraft configurations and advanced materials, which also require new numerical formulations to be assessed. In this research, on one hand, the windowless configuration for a commercial aircraft is studied with traditional preliminary design methods in order to achieve a weight reduction and consequently a return in terms of emissions and costs. On the other hand, a new class of insulating materials, the acoustic metamaterials, is applied on the passenger cabin lining panels. The complex kinematic behaviour of these advanced materials is studied through the Carrera's Unified Formulation, that enhances a wide class of powerful refined shell and beam theories with a unique formulation.