849 resultados para Exclusion process, Multi-species, Multi-scale modelling


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we present a novel indexing technique called Multi-scale Similarity Indexing (MSI) to index imagersquos multi-features into a single one-dimensional structure. Both for text and visual feature spaces, the similarity between a point and a local partitionrsquos center in individual space is used as the indexing key, where similarity values in different features are distinguished by different scale. Then a single indexing tree can be built on these keys. Based on the property that relevant images haves similar similarity values from the center of the same local partition in any feature space, certain number of irrelevant images can be fast pruned based on the triangle inequity on indexing keys. To remove the ldquodimensionality curserdquo existing in high dimensional structure, we propose a new technique called Local Bit Stream (LBS). LBS transforms imagersquos text and visual feature representations into simple, uniform and effective bit stream (BS) representations based on local partitionrsquos center. Such BS representations are small in size and fast for comparison since only bit operation are involved. By comparing common bits existing in two BSs, most of irrelevant images can be immediately filtered. Our extensive experiment showed that single one-dimensional index on multi-features improves multi-indices on multi-features greatly. Our LBS method outperforms sequential scan on high dimensional space by an order of magnitude.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In many models of edge analysis in biological vision, the initial stage is a linear 2nd derivative operation. Such models predict that adding a linear luminance ramp to an edge will have no effect on the edge's appearance, since the ramp has no effect on the 2nd derivative. Our experiments did not support this prediction: adding a negative-going ramp to a positive-going edge (or vice-versa) greatly reduced the perceived blur and contrast of the edge. The effects on a fairly sharp edge were accurately predicted by a nonlinear multi-scale model of edge processing [Georgeson, M. A., May, K. A., Freeman, T. C. A., & Hesse, G. S. (in press). From filters to features: Scale-space analysis of edge and blur coding in human vision. Journal of Vision], in which a half-wave rectifier comes after the 1st derivative filter. But we also found that the ramp affected perceived blur more profoundly when the edge blur was large, and this greater effect was not predicted by the existing model. The model's fit to these data was much improved when the simple half-wave rectifier was replaced by a threshold-like transducer [May, K. A. & Georgeson, M. A. (2007). Blurred edges look faint, and faint edges look sharp: The effect of a gradient threshold in a multi-scale edge coding model. Vision Research, 47, 1705-1720.]. This modified model correctly predicted that the interaction between ramp gradient and edge scale would be much larger for blur perception than for contrast perception. In our model, the ramp narrows an internal representation of the gradient profile, leading to a reduction in perceived blur. This in turn reduces perceived contrast because estimated blur plays a role in the model's estimation of contrast. Interestingly, the model predicts that analogous effects should occur when the width of the window containing the edge is made narrower. This has already been confirmed for blur perception; here, we further support the model by showing a similar effect for contrast perception. © 2007 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Edges are key points of information in visual scenes. One important class of models supposes that edges correspond to the steepest parts of the luminance profile, implying that they can be found as peaks and troughs in the response of a gradient (first-derivative) filter, or as zero-crossings (ZCs) in the second-derivative. A variety of multi-scale models are based on this idea. We tested this approach by devising a stimulus that has no local peaks of gradient and no ZCs, at any scale. Our stimulus profile is analogous to the classic Mach-band stimulus, but it is the local luminance gradient (not the absolute luminance) that increases as a linear ramp between two plateaux. The luminance profile is a smoothed triangle wave and is obtained by integrating the gradient profile. Subjects used a cursor to mark the position and polarity of perceived edges. For all the ramp-widths tested, observers marked edges at or close to the corner points in the gradient profile, even though these were not gradient maxima. These new Mach edges correspond to peaks and troughs in the third-derivative. They are analogous to Mach bands - light and dark bars are seen where there are no luminance peaks but there are peaks in the second derivative. Here, peaks in the third derivative were seen as light-to-dark edges, troughs as dark-to-light edges. Thus Mach edges are inconsistent with many standard edge detectors, but are nicely predicted by a new model that uses a (nonlinear) third-derivative operator to find edge points.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Often observations are nested within other units. This is particularly the case in the educational sector where school performance in terms of value added is the result of school contribution as well as pupil academic ability and other features relating to the pupil. Traditionally, the literature uses parametric (i.e. it assumes a priori a particular function on the production process) Multi-Level Models to estimate the performance of nested entities. This paper discusses the use of the non-parametric (i.e. without a priori assumptions on the production process) Free Disposal Hull model as an alternative approach. While taking into account contextual characteristics as well as atypical observations, we show how to decompose non-parametrically the overall inefficiency of a pupil into a unit specific and a higher level (i.e. a school) component. By a sample of entry and exit attainments of 3017 girls in British ordinary single sex schools, we test the robustness of the non-parametric and parametric estimates. We find that the two methods agree in the relative measures of the scope for potential attainment improvement. Further, the two methods agree on the variation in pupil attainment and the proportion attributable to pupil and school level.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

For the first time for the model of real-world forward-pumped fibre Raman amplifier with the randomly varying birefringence, the stochastic calculations have been done numerically based on the Kloeden-Platen-Schurz algorithm. The results obtained for the averaged gain and gain fluctuations as a function of polarization mode dispersion (PMD) parameter agree quantitatively with the results of previously developed analytical model. Simultaneously, the direct numerical simulations demonstrate an increased stochastisation (maximum in averaged gain variation) within the region of the polarization mode dispersion parameter of 0.1÷0.3 ps/km1/2. The results give an insight into margins of applicability of a generic multi-scale technique widely used to derive coupled Manakov equations and allow generalizing analytic model with accounting for pump depletion, group-delay dispersion and Kerr-nonlinearity that is of great interest for development of the high-transmission-rates optical networks.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

For a fibre Raman amplifier with randomly varying birefringence, we provide insight on the validity of previously explored multi-scale techniques leading to polarisation pulling of the signal state of polarisation to the pump state of polarisation. Unlike previous study, we demonstrate that in addition to polarisation pulling a new random birefringence-mediated phenomenon that goes beyond existing multi-scale techniques can boost resonance-like gain fluctuations similar to the Stochastic Anti-Resonance. For mode locked fibre lasers we report on fast and slow polarisation dynamics of fundamental, bound state, and multipulsing vector solitons along with stretched pulses. We demonstrate that tuning cavity anisotropy and birefringence along with parameters of an injected signal with randomly varying state of polarisation provides access to the variety of vector waveforms previously unexplored.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hospitals can experience difficulty in detecting and responding to early signs of patient deterioration leading to late intensive care referrals, excess mortality and morbidity, and increased hospital costs. Our study aims to explore potential indicators of physiological deterioration by the analysis of vital-signs. The dataset used comprises heart rate (HR) measurements from MIMIC II waveform database, taken from six patients admitted to the Intensive Care Unit (ICU) and diagnosed with severe sepsis. Different indicators were considered: 1) generic early warning indicators used in ecosystems analysis (autocorrelation at-1-lag (ACF1), standard deviation (SD), skewness, kurtosis and heteroskedasticity) and 2) entropy analysis (kernel entropy and multi scale entropy). Our preliminary findings suggest that when a critical transition is approaching, the equilibrium state changes what is visible in the ACF1 and SD values, but also by the analysis of the entropy. Entropy allows to characterize the complexity of the time series during the hospital stay and can be used as an indicator of regime shifts in a patient’s condition. One of the main problems is its dependency of the scale used. Our results demonstrate that different entropy scales should be used depending of the level of entropy verified.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bródy András kutatásainak egyik központi témaköre a gazdasági mozgás vizsgálata volt. Írásunkban Bródy elméletét kívánjuk röviden áttekinteni és összefoglalni. A termelés sokszektoros leírása egyben árelméletét (értékelméletét, méréselméletét) is keretbe foglalja. Ebben a keretben a gazdasági mozgás összetett ingadozása technológiai alapon elemezhető. Bródy megközelítésében a gazdasági ciklust nem külső megrázkódások magyarázzák, hanem a termelési rendszer belső arányai és kapcsolatai. A termelési struktúrát az árak és a volumenek egyformán alakítják, ezek között nincsen kitüntetett vagy domináns tényező. Az árak és a volumenek a köztük lévő duális kapcsolatban alakulnak ki. A gazdaság mozgásegyenleteit technológiai mérlegösszefüggések, valamint a piaci csere útján a gazdaságban újraelosztásra (újratermelésre) kerülő termékek felhasználása és az eszközlekötés változása írja le. Az így meghatározott mozgásegyenletek a gazdaság természetes mozgását ciklusmozgás alakjában írják le. A technológia vagy az értékviszonyok megváltozása (sokkok) a gazdaság ciklikus mozgásának megváltozásában tükröződik. Bródy munkáiban technológiai megalapozást nyer a történelemből ismert számos jellegzetes gazdasági ciklus. / === / Economic motion and dynamics are at the heart of Andras Brody's creative output. This paper attempts a bird's-eye view of his theory of economic cycles. Brody's multi-sector modelling of production has provided a framework for price theory (the theory of value and measurement). His theory of economic motion with cyclical characteristics is technology driven. It argues that the complex web of economic cycles is determined by the proportions and interrelationships of the system of production, not by arbitrary external shocks. The structure's behaviour are driven by prices and proportions, with the duality of prices and proportions as a dominant feature. These are features in common with the Leontief models, which Brody extended to economic cycles. Brody saw economic cycles as natural motions of economic systems with accumulated assets (time lags) and market exchange of goods (demand and supply adjustment). Changes in technology or valuations (shocks) are reflected in changing patterns of motion. His model of the economy is a fine instrument that enabled him to show how the technological parameters of its system determine the frequency and other characteristics of various economic cycles identified in economic history.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A visually apparent but scientifically untested outcome of land-use change is homogenization across urban areas, where neighborhoods in different parts of the country have similar patterns of roads, residential lots, commercial areas, and aquatic features. We hypothesize that this homogenization extends to ecological structure and also to ecosystem functions such as carbon dynamics and microclimate, with continental-scale implications. Further, we suggest that understanding urban homogenization will provide the basis for understanding the impacts of urban land-use change from local to continental scales. Here, we show how multi-scale, multi-disciplinary datasets from six metropolitan areas that cover the major climatic regions of the US (Phoenix, AZ; Miami, FL; Baltimore, MD; Boston, MA; Minneapolis–St Paul, MN; and Los Angeles, CA) can be used to determine how household and neighborhood characteristics correlate with land-management practices, land-cover composition, and landscape structure and ecosystem functions at local, regional, and continental scales.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mapping of vegetation patterns over large extents using remote sensing methods requires field sample collections for two different purposes: (1) the establishment of plant association classification systems from samples of relative abundance estimates; and (2) training for supervised image classification and accuracy assessment of satellite data derived maps. One challenge for both procedures is the establishment of confidence in results and the analysis across multiple spatial scales. Continuous data sets that enable cross-scale studies are very time consuming and expensive to acquire and such extensive field sampling can be invasive. The use of high resolution aerial photography (hrAP) offers an alternative to extensive, invasive, field sampling and can provide large volume, spatially continuous, reference information that can meet the challenges of confidence building and multi-scale analysis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Microcirculatory vessels are lined by endothelial cells (ECs) which are surrounded by a single or multiple layer of smooth muscle cells (SMCs). Spontaneous and agonist induced spatiotemporal calcium (Ca2+) events are generated in ECs and SMCs, and regulated by complex bi-directional signaling between the two layers which ultimately determines the vessel tone. The contractile state of microcirculatory vessels is an important factor in the determination of vascular resistance, blood flow and blood pressure. This dissertation presents theoretical insights into some of the important and currently unresolved phenomena in microvascular tone regulation. Compartmental and continuum models of isolated EC and SMC, coupled EC-SMC and a multi-cellular vessel segment with deterministic and stochastic descriptions of the cellular components were developed, and the intra- and inter-cellular spatiotemporal Ca2+ mobilization was examined. Coupled EC-SMC model simulations captured the experimentally observed localized subcellular EC Ca2+ events arising from the opening of EC transient receptor vanilloid 4 (TRPV4) channels and inositol triphosphate receptors (IP3Rs). These localized EC Ca2+ events result in endothelium-derived hyperpolarization (EDH) and Nitric Oxide (NO) production which transmit to the adjacent SMCs to ultimately result in vasodilation. The model examined the effect of heterogeneous distribution of cellular components and channel gating kinetics in determination of the amplitude and spread of the Ca2+ events. The simulations suggested the necessity of co-localization of certain cellular components for modulation of EDH and NO responses. Isolated EC and SMC models captured intracellular Ca2+ wave like activity and predicted the necessity of non-uniform distribution of cellular components for the generation of Ca2+ waves. The simulations also suggested the role of membrane potential dynamics in regulating Ca2+ wave velocity. The multi-cellular vessel segment model examined the underlying mechanisms for the intercellular synchronization of spontaneous oscillatory Ca2+ waves in individual SMC. From local subcellular events to integrated macro-scale behavior at the vessel level, the developed multi-scale models captured basic features of vascular Ca2+ signaling and provide insights for their physiological relevance. The models provide a theoretical framework for assisting investigations on the regulation of vascular tone in health and disease.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Lena River Delta, situated in Northern Siberia (72.0 - 73.8° N, 122.0 - 129.5° E), is the largest Arctic delta and covers 29,000 km**2. Since natural deltas are characterised by complex geomorphological patterns and various types of ecosystems, high spatial resolution information on the distribution and extent of the delta environments is necessary for a spatial assessment and accurate quantification of biogeochemical processes as drivers for the emission of greenhouse gases from tundra soils. In this study, the first land cover classification for the entire Lena Delta based on Landsat 7 Enhanced Thematic Mapper (ETM+) images was conducted and used for the quantification of methane emissions from the delta ecosystems on the regional scale. The applied supervised minimum distance classification was very effective with the few ancillary data that were available for training site selection. Nine land cover classes of aquatic and terrestrial ecosystems in the wetland dominated (72%) Lena Delta could be defined by this classification approach. The mean daily methane emission of the entire Lena Delta was calculated with 10.35 mg CH4/m**2/d. Taking our multi-scale approach into account we find that the methane source strength of certain tundra wetland types is lower than calculated previously on coarser scales.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The feasibility of monitoring fluid flow subsurface processes that result in density changes, using the iGrav superconducting gravimeter, is investigated. Practical targets include steam-assisted gravity drainage (SAGD) bitumen depletion and water pumping from aquifers, for which there is currently a void in low-impact, inexpensive monitoring techniques. This study demonstrates that the iGrav has the potential to be applied to multi-scale and diverse reservoirs. Gravity and gravity gradient signals are forward modeled for a real SAGD reservoir at two time steps, and for surface-fed and groundwater-fed aquifer pumping models, to estimate signal strength and directional dependency of water flow. Time-lapse gravimetry on small-scale reservoirs exhibits two obstacles, namely, a µgal sensitivity requirement and high noise levels in the vicinity of the reservoir. In this study, both limitations are overcome by proposing (i) a portable superconducting gravimeter, and (ii) a pair of instruments under various baseline geometries. This results in improved spatial resolution for locating depletion zones, as well as the cancellation of noise common in both instruments. Results indicate that a pair of iGrav superconducting gravimeters meet the sensitivity requirements and the spatial focusing desired to monitor SAGD bitumen migration at the reservoir scales. For SAGD reservoirs, the well pair separation, reservoir depth, and survey sampling determine the resolvability of individual well pair depletion patterns during the steam chamber rising phase, and general reservoir depletion patterns during the steam chamber spreading phase. Results show that monitoring water table elevation changes due to pumping and tracking whether groundwater or surface water is being extracted are feasible.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Pico de Navas landslide was a large-magnitude rotational movement, affecting 50x106m3 of hard to soft rocks. The objectives of this study were: (1) to characterize the landslide in terms of geology, geomorphological features and geotechnical parameters; and (2) to obtain an adequate geomechanical model to comprehensively explain its rupture, considering topographic, hydro-geological and geomechanical conditions. The rupture surface crossed, from top to bottom: (a) more than 200 m of limestone and clay units of the Upper Cretaceous, affected by faults; and (b) the Albian unit of Utrillas facies composed of silty sand with clay (Kaolinite) of the Lower Cretaceous. This sand played an important role in the basal failure of the slide due to the influence of fine particles (silt and clay), which comprised on average more than 70% of the sand, and the high content presence of kaolinite (>40%) in some beds. Its geotechnical parameters are: unit weight (δ) = 19-23 KN/m3; friction angle (φ) = 13º-38º and cohesion (c) = 10-48 KN/m2. Its microstructure consists of accumulations of kaolinite crystals stuck to terrigenous grains, making clayey peds. We hypothesize that the presence of these aggregates was the internal cause of fluidification of this layer once wet. Besides the faulted structure of the massif, other conditioning factors of the movement were: the large load of the upper limestone layers; high water table levels; high water pore pressure; and the loss of strength due to wet conditions. The 3D simulation of the stability conditions concurs with our hypothesis. The landslide occurred in the Recent or Middle Holocene, certainly before at least 500 BC and possibly during a wet climate period. Today, it appears to be inactive. This study helps to understand the frequent slope instabilities all along the Iberian Range when facies Utrillas is present.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Global warming, energy savings, and life cycle analysis issues are factors that have contributed to the rapid expansion of plant-based materials for buildings, which can be qualified as environmental-friendly, sustainable and efficient multifunctional materials. This review presents an overview on the several possibilities developed worldwide about the use of plant aggregate to design bio-based building materials. The use of crushed vegetal aggregates such as hemp (shiv), flax, coconut shells and other plants associated to mineral binder represents the most popular solution adopted in the beginning of this revolution in building materials. Vegetal aggregates are generally highly porous with a low apparent density and a complex architecture marked by a multi-scale porosity. These geometrical characteristics result in a high capacity to absorb sounds and have hygro-thermal transfer ability. This is one of the essential characteristics which differ of vegetal concrete compared to the tradition mineral-based concretes. In addition, the high flexibility of the aggregates leads to a non-fragile elasto-plastic behavior and a high deformability under stress, lack of fracturing and marked ductility with absorbance of the strains ever after having reached the maximum mechanical strength. Due to the sensitivity to moisture, the assessment of the durability of vegetal concrete constitutes one of the next scientific challenging of bio-based building materials.