930 resultados para Equilibrium topology
Resumo:
Idealized explicit convection simulations of the Met Office Unified Model exhibit spontaneous self-aggregation in radiative-convective equilibrium, as seen in other models in previous studies. This self-aggregation is linked to feedbacks between radiation, surface fluxes, and convection, and the organization is intimately related to the evolution of the column water vapor field. Analysis of the budget of the spatial variance of column-integrated frozen moist static energy (MSE), following Wing and Emanuel [2014], reveals that the direct radiative feedback (including significant cloud longwave effects) is dominant in both the initial development of self-aggregation and the maintenance of an aggregated state. A low-level circulation at intermediate stages of aggregation does appear to transport MSE from drier to moister regions, but this circulation is mostly balanced by other advective effects of opposite sign and is forced by horizontal anomalies of convective heating (not radiation). Sensitivity studies with either fixed prescribed radiative cooling, fixed prescribed surface fluxes, or both do not show full self-aggregation from homogeneous initial conditions, though fixed surface fluxes do not disaggregate an initialized aggregated state. A sensitivity study in which rain evaporation is turned off shows more rapid self-aggregation, while a run with this change plus fixed radiative cooling still shows strong self-aggregation, supporting a “moisture memory” effect found in Muller and Bony [2015]. Interestingly, self-aggregation occurs even in simulations with sea surface temperatures (SSTs) of 295 K and 290 K, with direct radiative feedbacks dominating the budget of MSE variance, in contrast to results in some previous studies.
Resumo:
Melts of ABA triblock copolymer molecules with identical end blocks are examined using self-consistent field theory (SCFT). Phase diagrams are calculated and compared with those of homologous AB diblock copolymers formed by snipping the triblocks in half. This creates additional end segments which decreases the degree of segregation. Consequently, triblock melts remain ordered to higher temperatures than their diblock counterparts. We also find that middle-block domains are easier to stretch than end-block domains. As a result, domain spacings are slightly larger, the complex phase regions are shifted towards smaller A-segment compositions, and the perforated-lamellar phase becomes more metastable in triblock melts as compared to diblock melts. Although triblock and diblock melts exhibit very similar phase behavior, their mechanical properties can differ substantially due to triblock copolymers that bridge between otherwise disconnected A domains. We evaluate the bridging fraction for lamellar, cylindrical, and spherical morphologies to be about 40%–45%, 60%–65%, and 75%–80%, respectively. These fractions only depend weakly on the degree of segregation and the copolymer composition.
Resumo:
Ever since the classic research of Nicholls (1976) and others, effort has been recognized as a double-edged sword: whilst it might enhance achievement, it undermines academic self-concept (ASC). However, there has not been a thorough evaluation of the longitudinal reciprocal effects of effort, ASC and achievement,in the context of modern self-concept theory and statistical methodology. Nor have there been developmental equilibrium tests of whether these effects are consistent across the potentially volatile early-to-middle adolescence. Hence, focusing on mathematics, we evaluate reciprocal effects models over the first four years of secondary school, relating effort, achievement (test scores and school grades), ASC, and ASCxEffort interactions for a representative sample of 3,421 German students (Mn age = 11.75 years at Wave 1). ASC, effort and achievement were positively correlated at each wave, and there was a clear pattern of positive reciprocal positive effects among ASC, test scores and school grades—each contributing to the other, after controlling for the prior effects of all others. There was an asymmetrical pattern of effects for effort that is consistent with the double-edged sword premise: prior school grades had positive effects on subsequent effort, but prior effort had non-significant or negative effects on subsequent grades and ASC. However, on the basis of a synergistic application of new theory and methodology, we predicted and found a significant ASC-by-effort interaction, such that prior effort had more positive effects on subsequent ASC and school grades when prior ASC was high—thus providing a key to breaking the double-edged sword.
Resumo:
Acyl-CoA binding protein (ACBP) is a housekeeping protein and is an essential protein in human cell lines and in Trypanosoma brucei. The ACBP of Moniliophthora perniciosa is composed of 104 amino acids and is possibly a non-classic isoform exclusively from Basidiomycetes. The M. perniciosa acbp gene was cloned, and the protein was expressed and purified. Acyl-CoA ester binding was analyzed by isoelectric focusing, native gel electrophoresis and isothermal titration calorimetry. Our results suggest an increasing affinity of ACBP for longer acyl-CoA esters, such as myristoyl-CoA to arachidoyl-CoA, and best fit modeling indicates two binding sites. ACBP undergoes a shift from a monomeric to a dimeric state, as shown by dynamic light scattering, fluorescence anisotropy and native gel electrophoresis in the absence and presence of the ligand. The protein`s structure was determined at 1.6 angstrom resolution and revealed a new topology for ACBP, containing five a-helices instead of four. alpha-helices 1, 2, 3 and 4 adopted a bundled arrangement that is unique from the previously determined four-helix folds of ACBP, while alpha-helices 1, 2, 4 and 5 formed a classical four-helix bundle. A MES molecule was found in the CoA binding site, suggesting that the CoA site could be a target for small compound screening. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The deterpenation of bergamot essential oil can be performed by liquid liquid extraction using hydrous ethanol as the solvent. A ternary mixture composed of 1-methyl-4-prop-1-en-2-yl-cydohexene (limonene), 3,7-dimethylocta-1,6-dien-3-yl-acetate (linalyl acetate), and 3,7-dimethylocta-1,6-dien-3-ol (linalool), three major compounds commonly found in bergamot oil, was used to simulate this essential oil. Liquid liquid equilibrium data were experimentally determined for systems containing essential oil compounds, ethanol, and water at 298.2 K and are reported in this paper. The experimental data were correlated using the NRTL and UNIQUAC models, and the mean deviations between calculated and experimental data were lower than 0.0062 in all systems, indicating the good descriptive quality of the molecular models. To verify the effect of the water mass fraction in the solvent and the linalool mass fraction in the terpene phase on the distribution coefficients of the essential oil compounds, nonlinear regression analyses were performed, obtaining mathematical models with correlation coefficient values higher than 0.99. The results show that as the water content in the solvent phase increased, the kappa value decreased, regardless of the type of compound studied. Conversely, as the linalool content increased, the distribution coefficients of hydrocarbon terpene and ester also increased. However, the linalool distribution coefficient values were negatively affected when the terpene alcohol content increased in the terpene phase.
Resumo:
Liquid-liquid equilibrium experimental data for refined sunflower seed oil, artificially acidified with commercial oleic acid or commercial linoleic acid and a solvent (ethanol + water), were determined at 298.2 K. This set of experimental data and the experimental data from Cuevas et al.,(1) which were obtained from (283.2 to 333.2) K, for degummed sunflower seed oil-containing systems were correlated using NRTL and UNIQUAC models with temperature-dependent binary parameters. The deviation between experimental and calculated compositions presented average values of (1.13 and 1.41) % for NRTL and UNIQUAC equations, respectively, indicating that the models were able to correctly describe the behavior of compounds under different temperature and solvent hydration.
Resumo:
The present paper reports phase equilibrium experimental data for two systems composed by peanut oil or avocado seed oil + commercial oleic acid + ethanol + water at 298.2 K and different water contents in the solvent. The addition of water to the solvent reduces the loss of neutral oil in the alcoholic phase and improves the solvent selectivity. The experimental data were correlated by the NRTL and UNIQUAC models. The global deviations between calculated and experimental values were 0.63 % and 1.08 %, respectively, for the systems containing avocado seed oil. In the case of systems containing peanut oil those deviations were 0.65 % and 0.98 %, respectively. Such results indicate that both models were able to reproduce correctly the experimental data, although the NRTL model presented a better performance.
Resumo:
In this work, thermodynamic models for fitting the phase equilibrium of binary systems were applied, aiming to predict the high pressure phase equilibrium of multicomponent systems of interest in the food engineering field, comparing the results generated by the models with new experimental data and with those from the literature. Two mixing rules were used with the Peng-Robinson equation of state, one with the mixing rule of van der Waals and the other with the composition-dependent mixing rule of Mathias et al. The systems chosen are of fundamental importance in food industries, such as the binary systems CO(2)-limonene, CO(2)-citral and CO(2)-linalool, and the ternary systems CO(2)-Limonene-Citral and CO(2)-Limonene-Linalool, where high pressure phase equilibrium knowledge is important to extract and fractionate citrus fruit essential oils. For the CO(2)-limonene system, some experimental data were also measured in this work. The results showed the high capability of the model using the composition-dependent mixing rule to model the phase equilibrium behavior of these systems.
Resumo:
The diffusion of astrophysical magnetic fields in conducting fluids in the presence of turbulence depends on whether magnetic fields can change their topology via reconnection in highly conducting media. Recent progress in understanding fast magnetic reconnection in the presence of turbulence reassures that the magnetic field behavior in computer simulations and turbulent astrophysical environments is similar, as far as magnetic reconnection is concerned. This makes it meaningful to perform MHD simulations of turbulent flows in order to understand the diffusion of magnetic field in astrophysical environments. Our studies of magnetic field diffusion in turbulent medium reveal interesting new phenomena. First of all, our three-dimensional MHD simulations initiated with anti-correlating magnetic field and gaseous density exhibit at later times a de-correlation of the magnetic field and density, which corresponds well to the observations of the interstellar media. While earlier studies stressed the role of either ambipolar diffusion or time-dependent turbulent fluctuations for de-correlating magnetic field and density, we get the effect of permanent de-correlation with one fluid code, i.e., without invoking ambipolar diffusion. In addition, in the presence of gravity and turbulence, our three-dimensional simulations show the decrease of the magnetic flux-to-mass ratio as the gaseous density at the center of the gravitational potential increases. We observe this effect both in the situations when we start with equilibrium distributions of gas and magnetic field and when we follow the evolution of collapsing dynamically unstable configurations. Thus, the process of turbulent magnetic field removal should be applicable both to quasi-static subcritical molecular clouds and cores and violently collapsing supercritical entities. The increase of the gravitational potential as well as the magnetization of the gas increases the segregation of the mass and magnetic flux in the saturated final state of the simulations, supporting the notion that the reconnection-enabled diffusivity relaxes the magnetic field + gas system in the gravitational field to its minimal energy state. This effect is expected to play an important role in star formation, from its initial stages of concentrating interstellar gas to the final stages of the accretion to the forming protostar. In addition, we benchmark our codes by studying the heat transfer in magnetized compressible fluids and confirm the high rates of turbulent advection of heat obtained in an earlier study.
Resumo:
Given two maps h : X x K -> R and g : X -> K such that, for all x is an element of X, h(x, g(x)) = 0, we consider the equilibrium problem of finding (x) over tilde is an element of X such that h((x) over tilde, g(x)) >= 0 for every x is an element of X. This question is related to a coincidence problem.
Resumo:
Chaotic synchronization has been discovered to be an important property of neural activities, which in turn has encouraged many researchers to develop chaotic neural networks for scene and data analysis. In this paper, we study the synchronization role of coupled chaotic oscillators in networks of general topology. Specifically, a rigorous proof is presented to show that a large number of oscillators with arbitrary geometrical connections can be synchronized by providing a sufficiently strong coupling strength. Moreover, the results presented in this paper not only are valid to a wide class of chaotic oscillators, but also cover the parameter mismatch case. Finally, we show how the obtained result can be applied to construct an oscillatory network for scene segmentation.
Resumo:
Over the useful life of a LAN, network downtimes will have a negative impact on organizational productivity not included in current Network Topological Design (NTD) problems. We propose a new approach to LAN topological design that includes the impact of these productivity losses into the network design, minimizing not only the CAPEX but also the expected cost of unproductiveness attributable to network downtimes over a certain period of network operation.
Resumo:
For tokamak models using simplified geometries and reversed shear plasma profiles, we have numerically investigated how the onset of Lagrangian chaos at the plasma edge may affect the plasma confinement in two distinct but closely related problems. Firstly, we have considered the motion of particles in drift waves in the presence of an equilibrium radial electric field with shear. We have shown that the radial particle transport caused by this motion is selective in phase space, being determined by the resonant drift waves and depending on the parameters of both the resonant waves and the electric field profile. Moreover, we have shown that an additional transport barrier may be created at the plasma edge by increasing the electric field. In the second place, we have studied escape patterns and magnetic footprints of chaotic magnetic field lines in the region near a tokamak wall, when there are resonant modes due to the action of an ergodic magnetic limiter. A non-monotonic safety factor profile has been used in the analysis of field line topology in a region of negative magnetic shear. We have observed that, if internal modes are perturbed, the distributions of field line connection lengths and magnetic footprints exhibit spatially localized escape channels. For typical physical parameters of a fusion plasma, the two Lagrangian chaotic processes considered in this work can be effective in usual conditions so as to influence plasma confinement. The reversed shear effects discussed in this work may also contribute to evaluate the transport barrier relevance in advanced confinement scenarios in future tokamak experiments.
Resumo:
We investigate the eigenvalue statistics of ensembles of normal random matrices when their order N tends to infinite. In the model, the eigenvalues have uniform density within a region determined by a simple analytic polynomial curve. We study the conformal deformations of equilibrium measures of normal random ensembles to the real line and give sufficient conditions for it to weakly converge to a Wigner measure.