871 resultados para Electronic magazines
Resumo:
We address the effect of solvation on the lowest electronic excitation energy of camphor. The solvents considered represent a large variation in-solvent polarity. We consider three conceptually different ways of accounting for the solvent using either an implicit, a discrete or an explicit solvation model. The solvatochromic shifts in polar solvents are found to be in good agreement with the experimental data for all three solvent models. However, both the implicit and discrete solvation models are less successful in predicting solvatochromic shifts for solvents of low polarity. The results presented suggest the importance of using explicit solvent molecules in the case of nonpolar solvents. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
A combined and sequential Monte Carlo-quantum mechanics methodology is used to describe the electronic absorption spectrum of the fluorescein dianion in water. Different sets of 100 statistically relevant configurations composed of the solute and several solvent molecules are sampled from the Monte Carlo simulation for a posteriori quantum mechanical calculations of the spectra. In the largest case the configurations are composed of fluorescein and 90 explicit water molecules embedded in the electrostatic field of all remaining water molecules within a distance of 11.3 angstrom. These configurations include 305 atoms and 842 valence electrons, justifying the use of a semi-empirical approach. The electronic spectrum is then calculated using the INDO/CIS method. The solvatochromic shift of fluorescein in water, compared with in isolation, is calculated using the discrete and explicit solvent models. The use of electrostatically embedded explicit water molecules, in INDO/CIS calculations, gives a good description of the spectral shift of the fluorescein dianion in aqueous environment. The results are verified to converge both statistically and with respect to the number of explicit solvent molecules used.
Resumo:
Electronic properties of a methane-water solution were investigated by a sequential quantum mechanical/molecular dynamics approach. Upon hydration methane acquires an induced dipole moment of similar to 0.5 +/- 0.2 D. This is related to polarisation effects and to weak methane-water hydrogen bond interactions. From gas phase to solution, the first vertical excitation and ionisation energies of methane are red-shifted by 0.45 +/- 0.25 and 0.87 +/- 0.40 eV, respectively. We also report results for the dynamic polarisability of methane in water. In comparison with water, no difference was found for the average monomeric dipole moment of water molecules in close interaction with methane. (c) 2011 Elsevier B.V. All rights reserved.
Resumo:
The structural, electronic and magnetic properties of Fe and Ti atomic wires and the complete covering when adsorbed on graphene are presented through ab initio calculations based on density functional theory. The most stable configurations are investigated for Fe and Ti in different concentrations adsorbed on the graphene surface, and the corresponding binding energies are calculated. The results show a tendency of the Ti atoms to cover uniformly the graphene surface, whereas the Fe atoms form clusters. The adsorption of the transition metal on the graphene surface changes significantly the electronic density of states near the graphene Fermi region. In all arrangements studied, a charge transfer is observed from the adsorbed species to the graphene surface due to the high hybridizations between the systems.
Resumo:
We report on the measurements of the Shubnikov de Haas oscillations (SdH) in symmetrically doped AlxGa1-xAs double wells with different Al compositions in wells, which lead to the opposite signs of the electronic g-factor in each layer. Surprisingly, the spin splitting appears and collapses several times with increase in the magnetic field, We attribute such behaviour to the oscillations of the exchange-correlation term with Landau filling factor. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Ab initio simulations of carbon nanotubes interacting with ascorbic acid and nicotinamide are reported. The electronic transport properties of these systems are studied using a combination of density functional theory and non-equilibrium Green`s functions methods. The adsorptions of both molecules are observed to depend strongly on their functionalization. The interaction through the appropriate functionalized species modifies the structural and electronic properties of the original system, resulting in a chemisorption regime. Changes in the electronic transport properties are also observed, with reductions on the total electronic transmission probabilities. Nevertheless, when the molecules interact through the pristine form, a physisorption interaction is observed with insignificant structural and electronic transport changes. (c) 2011 Elsevier B.V. All rights reserved.
Resumo:
Measurements of X-ray diffraction, electrical resistivity, and magnetization are reported across the Jahn-Teller phase transition in LaMnO(3). Using a thermodynamic equation, we obtained the pressure derivative of the critical temperature (T(JT)), dT(JT)/dP = -28.3 K GPa(-1). This approach also reveals that 5.7(3)J(mol K)(-1) comes from the volume change and 0.8(2)J(mol K)(-1) from the magnetic exchange interaction change across the phase transition. Around T(JT), a robust increase in the electrical conductivity takes place and the electronic entropy change, which is assumed to be negligible for the majority of electronic systems, was found to be 1.8(3)J(mol K)(-1).
Resumo:
We performed a first principles total energy investigation on the structural, electronic, and vibrational propel ties of adamantane molecules, functionalized with amine and ethanamine groups. We computed the vibrational signatures of amantadine and rimanadine isomers with the functional groups bonded to clinic:ill carbon sites By comparing Out results with recent infrared and Raman spectroscopic data, we discuss the possible presence of different isomers in experimental samples.
Resumo:
We report results on the electronic, vibrational, and optical properties of SnO(2) obtained using first-principles calculations performed within the density functional theory. All the calculated phonon frequencies, real and imaginary parts of complex dielectric function, the energy-loss spectrum, the refractive index, the extinction, and the absorption coefficients show good agreement with experimental results. Based on our calculations, the SnO(2) electron and hole effective masses were found to be strongly anisotropic. The lattice contribution to the low-frequency region of the SnO(2) dielectric function arising from optical phonons was also determined resulting the values of E > (1aSyen) (latt) (0) = 14.6 and E > (1ayen) (latt) (0) = 10.7 for directions perpendicular and parallel to the tetragonal c-axis, respectively. This is in excellent agreement with the available experimental data. After adding the electronic contribution to the lattice contribution, a total average value of E >(1)(0) = 18.2 is predicted for the static permittivity constant of SnO(2).
Resumo:
We present our theoretical results for the structural, electronic, vibrational and optical properties of MO(2) (M = Sn, Zr, Hf and Ti) obtained by first-principles calculations. Relativistic effects are demonstrated to be important for a realistic description of the detailed structure of the electronic frequency-dependent dielectric function, as well as of the carrier effective masses. Based on our results, we found that the main contribution of the high values calculated for the oxides dielectric constants arises from the vibrational properties of these oxides, and the vibrational static dielectric constant values diminish with increasing pressure. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
Cobalt-related impurity centers in diamond have been studied using first principles calculations. We computed the symmetry, formation and transition energies, and hyperfine parameters of cobalt impurities in isolated configurations and in complexes involving vacancies and nitrogen atoms. We found that the Co impurity in a divacant site is energetically favorable and segregates nitrogen atoms in its neighborhood. Our results are discussed in the context of the recently observed Co-related electrically active centers in synthetic diamond.
Resumo:
Ab initio calculations based on the density functional theory (DFT) are used to investigate the electronic and optical properties of sillimanite. The geometrical parameters of the unit cell, which contain 32 atoms, have been fully optimized and are in good agreement with the experimental data. The electronic structure shows that sillimanite has an indirect band gap of 5.18 eV. The complex dielectric function and optical constants, such as extinction coefficient, refractive index, reflectivity and energy-loss spectrum, are calculated. The optical properties of sillimanite are discussed based on the band structure calculations. It is shown that the O-2p states and Al-3s, Si-3s states play the major role in optical transitions as initial and final states, respectively. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
The electronic and optical properties of andalusite were studied by using quantum-mechanical calculations based on the density functional theory (DFT). The electronic structure shows that andalusite has a direct band gap of 5.01 eV. The complex dielectric function and optical constants, such as extinction coefficient, refractive index, reflectivity and energy-loss spectrum, are calculated. The optical properties of andalusite are discussed based on the band structure calculations. It is shown that the O-2p states and Al-3s states play a major role in optical transitions as initial and final states, respectively. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
The electronic and optical properties of grossular garnet are investigated using density functional theory (DFT) within generalized gradient approximation (GGA). The calculated lattice parameters are in good agreement with the experiment data. The electronic structure shows that grossular has a direct band gap of 5.22 eV. The dielectric functions, reflective index, extinction coefficient, reflectivity and energy-loss spectrum are calculated. The optical properties of grossular are discussed based on the band structure calculations. The O 2p states and Si 3s play a major role in these optical transitions as initial and final states, respectively. The absorption spectrum is localized in the ultraviolet range between 30 and 250 nm. Finally, we concluded that pure grossular crystal does not absorb radiation in the visible range. (c) 2009 Elsevier B.V. All rights reserved.
Resumo:
This study reports the results of ab initio electronic and optical calculations for pure socialite crystal using the linear augmented plane wave (LAPW) method within density functional theory (DFT). The calculated electronic structure revealed predominantly orbital characters of the valence band and the conduction band, and enabled us to determine the type and the value of the fundamental gap of the compound. The imaginary part of the dielectric tensor, extinction coefficient and refraction index were calculated as functions of the incident radiation wavelength. It is shown that the O 2p states and Na 3s states play the major role in optical transitions as initial and final states, respectively. The absorption spectrum is localized in the ultraviolet range between 40 and 250 nm. Furthermore, we concluded that the material does not absorb radiation in the visible range. (C) 2009 Elsevier Ltd. All rights reserved.