760 resultados para Dynamic artificial neural network
Resumo:
The presence of circulating cerebral emboli represents an increased risk of stroke. The detection of such emboli is possible with the use of a transcranial Doppler ultrasound (TCD) system.
Resumo:
This papers describes an extantion of previous works on the subject of neural network proportional, integral and derivative (PID) autotuning. Basically, neural networks are employed to supply the three PID parameters, according to the integral of time multiplied by the absolute error (ITAE) criterion, to a standard PID controller.
Resumo:
The Proportional Integral and Devirative (PID) controller autotuning is an important problem, both in practical and theoretical terms. The autotuning procedure must take place in real-time, and therefore the corresponding optimisation procedure must also be executed in real-time and without disturbing on-line control.
Resumo:
PID controllers are widely used in industrial applications. Because the plant can be time variant, methods of autotuning of this type of controllers, are of great economical importance, see (Astrom, 1996). Since 1942, with the work of Ziegler and Nichols (Ziegler and Nichols, 1942), several methods have been proposed in the literature. Recently, a new technique using neural networks was proposed (Ruano et al., 1992). This technique has been shown to produce good tunings as long as certain limitations are met.
Resumo:
A recent servey (1) has reported that the majority of industrial loops are controlled by PID-type controllers and many of the PID controllers in operation are poorly tuned. poor PID tuning is due to the lack of a simple and practical tuning method for avarage users, and due to the tedious procedurs involved in the tuning and retuning of PID controllers.
Resumo:
In this paper, a scheme for the automatic tuning of PID controllers on-line, with the assistance of trained neural networks, is proposed. The alternative approaches are presented and compared.
Resumo:
Proportional, Integral and Derivative (PID) regulators are standard building blocks for industrial automation. Their popularity comes from their rebust performance and also from their functional simplicity. Whether because the plant is time-varying, or because of components ageing, these controllers need to be regularly retuned.
Resumo:
Proportional, Integral and Derivative (PID) regulators are standard building blocks for industrial automation. The popularity of these regulators comes from their rebust performance in a wide range of operating conditions, and also from their functional simplicity, which makes them suitable for manual tuning.
Resumo:
In this paper we consider the learning problem for a class of multilayer perceptrons which is practically relevant in control systems applications. By reformulating this problem, a new criterion is developed, which reduces the number of iterations required for the learning phase.
Resumo:
Food product safety is one of the most promising areas for the application of electronic noses. The performance of a portable electronic nose has been evaluated in monitoring the spoilage of beef fillet stored aerobically at different storage temperatures (0, 4, 8, 12, 16 and 20°C). This paper proposes a fuzzy-wavelet neural network model which incorporates a clustering pre-processing stage for the definition of fuzzy rules. The dual purpose of the proposed modeling approach is not only to classify beef samples in the respective quality class (i.e. fresh, semi-fresh and spoiled), but also to predict their associated microbiological population directly from volatile compounds fingerprints. Comparison results indicated that the proposed modeling scheme could be considered as a valuable detection methodology in food microbiology
Resumo:
In recent years, power systems have experienced many changes in their paradigm. The introduction of new players in the management of distributed generation leads to the decentralization of control and decision-making, so that each player is able to play in the market environment. In the new context, it will be very relevant that aggregator players allow midsize, small and micro players to act in a competitive environment. In order to achieve their objectives, virtual power players and single players are required to optimize their energy resource management process. To achieve this, it is essential to have financial resources capable of providing access to appropriate decision support tools. As small players have difficulties in having access to such tools, it is necessary that these players can benefit from alternative methodologies to support their decisions. This paper presents a methodology, based on Artificial Neural Networks (ANN), and intended to support smaller players. In this case the present methodology uses a training set that is created using energy resource scheduling solutions obtained using a mixed-integer linear programming (MIP) approach as the reference optimization methodology. The trained network is used to obtain locational marginal prices in a distribution network. The main goal of the paper is to verify the accuracy of the ANN based approach. Moreover, the use of a single ANN is compared with the use of two or more ANN to forecast the locational marginal price.
Resumo:
The reduction of greenhouse gas emissions is one of the big global challenges for the next decades due to its severe impact on the atmosphere that leads to a change in the climate and other environmental factors. One of the main sources of greenhouse gas is energy consumption, therefore a number of initiatives and calls for awareness and sustainability in energy use are issued among different types of institutional and organizations. The European Council adopted in 2007 energy and climate change objectives for 20% improvement until 2020. All European countries are required to use energy with more efficiency. Several steps could be conducted for energy reduction: understanding the buildings behavior through time, revealing the factors that influence the consumption, applying the right measurement for reduction and sustainability, visualizing the hidden connection between our daily habits impacts on the natural world and promoting to more sustainable life. Researchers have suggested that feedback visualization can effectively encourage conservation with energy reduction rate of 18%. Furthermore, researchers have contributed to the identification process of a set of factors which are very likely to influence consumption. Such as occupancy level, occupants behavior, environmental conditions, building thermal envelope, climate zones, etc. Nowadays, the amount of energy consumption at the university campuses are huge and it needs great effort to meet the reduction requested by European Council as well as the cost reduction. Thus, the present study was performed on the university buildings as a use case to: a. Investigate the most dynamic influence factors on energy consumption in campus; b. Implement prediction model for electricity consumption using different techniques, such as the traditional regression way and the alternative machine learning techniques; and c. Assist energy management by providing a real time energy feedback and visualization in campus for more awareness and better decision making. This methodology is implemented to the use case of University Jaume I (UJI), located in Castellon, Spain.
Resumo:
The work is intended to study the following important aspects of document image processing and develop new methods. (1) Segmentation ofdocument images using adaptive interval valued neuro-fuzzy method. (2) Improving the segmentation procedure using Simulated Annealing technique. (3) Development of optimized compression algorithms using Genetic Algorithm and parallel Genetic Algorithm (4) Feature extraction of document images (5) Development of IV fuzzy rules. This work also helps for feature extraction and foreground and background identification. The proposed work incorporates Evolutionary and hybrid methods for segmentation and compression of document images. A study of different neural networks used in image processing, the study of developments in the area of fuzzy logic etc is carried out in this work
Resumo:
In our study we use a kernel based classification technique, Support Vector Machine Regression for predicting the Melting Point of Drug – like compounds in terms of Topological Descriptors, Topological Charge Indices, Connectivity Indices and 2D Auto Correlations. The Machine Learning model was designed, trained and tested using a dataset of 100 compounds and it was found that an SVMReg model with RBF Kernel could predict the Melting Point with a mean absolute error 15.5854 and Root Mean Squared Error 19.7576