786 resultados para Data mining models


Relevância:

80.00% 80.00%

Publicador:

Resumo:

A classificação automática de sons urbanos é importante para o monitoramento ambiental. Este trabalho apresenta uma nova metodologia para classificar sons urbanos, que se baseia na descoberta de padrões frequentes (motifs) nos sinais sonoros e utiliza-los como atributos para a classificação. Para extrair os motifs é utilizado um método de descoberta multi-resolução baseada em SAX. Para a classificação são usadas árvores de decisão e SVMs. Esta nova metodologia é comparada com outra bastante utilizada baseada em MFCC. Para a realização de experiências foi utilizado o dataset UrbanSound disponível publicamente. Realizadas as experiências, foi possível concluir que os atributos motif são melhores que os MFCC a discriminar sons com timbres semelhantes e que os melhores resultados são conseguidos com ambos os tipos de atributos combinados. Neste trabalho foi também desenvolvida uma aplicação móvel para Android que permite utilizar os métodos de classificação desenvolvidos num contexto de vida real e expandir o dataset.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A tese desenvolvida tem como foco fornecer os meios necessários para extrair conhecimento contidos no histórico académico da instituição transformando a informação em algo simples e de fácil leitura para qualquer utilizador. Com o progresso da sociedade, as escolas recebem milhares de alunos todos os anos que terão de ser orientados e monitorizados pelos dirigentes das instituições académicas de forma a garantir programas eficientes e adequados para o progresso educacional de todos os alunos. Atribuir a um docente a responsabilidade de actuar segundo o historial académico dos seus alunos não é plausível uma vez que um aluno consegue produzir milhares de registos para análise. O paradigma de mineração de dados na educação surge com a necessidade de otimizar os recursos disponíveis expondo conclusões que não se encontram visiveis sem uma análise acentuada e cuidada. Este paradigma expõe de forma clara e sucinta os dados estatísticos analisados por computador oferecendo a possibilidade de melhorar as lacunas na qualidade de ensino das instituições. Esta dissertação detalha o desenvolvimento de uma ferramente de inteligência de negócio capaz de, através de mineração de dados, analisar e apresentar conclusões pertinentes de forma legível ao utilizador.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Dissertação apresentada como requisito parcial para obtenção do grau de Mestre em Estatística e Gestão de Informação.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Dissertação apresentada como requisito parcial para obtenção do grau de Mestre em Estatística e Gestão de Informação

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Dissertação para obtenção do Grau de Mestre em Engenharia Electrotécnica, Sistemas e Computadores

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Trabalho de Projeto apresentado como requisito parcial para obtenção do grau de Mestre em Estatística e Gestão de Informação

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Dissertação apresentada como requisito parcial para obtenção do grau de Mestre em Estatística e Gestão de Informação

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A inovação é considerada pelos economistas como fator determinante para o crescimento económico e social sustentável. No contexto da atual economia, global e marcada por uma profunda crise, torna-se imperativo compreender os padrões de inovação para suportar melhores políticas e respostas aos desafios que se impõem. Este entendimento conduz à ilação de que os desvios significativos no crescimento económico observado entre diferentes regiões são também explicados por diferenças espaciais nos padrões de inovação. Na sequência do exposto tem-se assistido a um renovado e crescente interesse no estudo da inovação numa perspetiva territorial e a uma crescente produção e disponibilização de dados para estudo e compreensão das suas dinâmicas. O objectivo principal da presente dissertação é demonstrar a utilidade de uma técnica de Data Mining, a rede neuronal Self Organizing Map, na exploração destes dados para estudo da inovação. Em concreto pretende-se demonstrar a capacidade desta técnica tanto para identificar perfis regionais de inovação bem como para visualizar a evolução desses perfis no tempo num mapa topológico virtual, o espaço de atributos do SOM, por comparação com um mapa geográfico. Foram utilizados dados Euronext relativos a 236 regiões europeias para os anos compreendidos entre 2003 e 2009. O Self Organizing Map foi construído com base no GeoSOM, software desenvolvido pelo Instituto Superior de Estatística e Gestão de Informação. Os resultados obtidos permitem demonstrar a utilidade desta técnica na visualização dos padrões de inovação das regiões europeias no espaço e no tempo.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In the recent past, hardly anyone could predict this course of GIS development. GIS is moving from desktop to cloud. Web 2.0 enabled people to input data into web. These data are becoming increasingly geolocated. Big amounts of data formed something that is called "Big Data". Scientists still don't know how to deal with it completely. Different Data Mining tools are used for trying to extract some useful information from this Big Data. In our study, we also deal with one part of these data - User Generated Geographic Content (UGGC). The Panoramio initiative allows people to upload photos and describe them with tags. These photos are geolocated, which means that they have exact location on the Earth's surface according to a certain spatial reference system. By using Data Mining tools, we are trying to answer if it is possible to extract land use information from Panoramio photo tags. Also, we tried to answer to what extent this information could be accurate. At the end, we compared different Data Mining methods in order to distinguish which one has the most suited performances for this kind of data, which is text. Our answers are quite encouraging. With more than 70% of accuracy, we proved that extracting land use information is possible to some extent. Also, we found Memory Based Reasoning (MBR) method the most suitable method for this kind of data in all cases.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The reduction of greenhouse gas emissions is one of the big global challenges for the next decades due to its severe impact on the atmosphere that leads to a change in the climate and other environmental factors. One of the main sources of greenhouse gas is energy consumption, therefore a number of initiatives and calls for awareness and sustainability in energy use are issued among different types of institutional and organizations. The European Council adopted in 2007 energy and climate change objectives for 20% improvement until 2020. All European countries are required to use energy with more efficiency. Several steps could be conducted for energy reduction: understanding the buildings behavior through time, revealing the factors that influence the consumption, applying the right measurement for reduction and sustainability, visualizing the hidden connection between our daily habits impacts on the natural world and promoting to more sustainable life. Researchers have suggested that feedback visualization can effectively encourage conservation with energy reduction rate of 18%. Furthermore, researchers have contributed to the identification process of a set of factors which are very likely to influence consumption. Such as occupancy level, occupants behavior, environmental conditions, building thermal envelope, climate zones, etc. Nowadays, the amount of energy consumption at the university campuses are huge and it needs great effort to meet the reduction requested by European Council as well as the cost reduction. Thus, the present study was performed on the university buildings as a use case to: a. Investigate the most dynamic influence factors on energy consumption in campus; b. Implement prediction model for electricity consumption using different techniques, such as the traditional regression way and the alternative machine learning techniques; and c. Assist energy management by providing a real time energy feedback and visualization in campus for more awareness and better decision making. This methodology is implemented to the use case of University Jaume I (UJI), located in Castellon, Spain.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

O paradigma de avaliação do ensino superior foi alterado em 2005 para ter em conta, para além do número de entradas, o número de alunos diplomados. Esta alteração pressiona as instituições académicas a melhorar o desempenho dos alunos. Um fenómeno perceptível ao analisar esse desempenho é que a performance registada não é nem uniforme nem constante ao longo da estadia do aluno no curso. Estas variações não estão a ser consideradas no esforço de melhorar o desempenho académico e surge motivação para detectar os diferentes perfis de desempenho e utilizar esse conhecimento para melhorar a o desempenho das instituições académicas. Este documento descreve o trabalho realizado no sentido de propor uma metodologia para detectar padrões de desempenho académico, num curso do ensino superior. Como ferramenta de análise são usadas técnicas de data mining, mais precisamente algoritmos de agrupamento. O caso de estudo para este trabalho é a população estudantil da licenciatura em Eng. Informática da FCT-UNL. Propõe-se dois modelos para o aluno, que servem de base para a análise. Um modelo analisa os alunos tendo em conta a sua performance num ano lectivo e o segundo analisa os alunos tendo em conta o seu percurso académico pelo curso, desde que entrou até se diplomar, transferir ou desistir. Esta análise é realizada recorrendo aos algoritmos de agrupamento: algoritmo aglomerativo hierárquico, k-means, SOM e SNN, entre outros.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Este trabalho apresenta o caso de um prestador de saúde privado, com maternidade, da zona da grande Lisboa, cujo número de partos tem vindo a decrescer. Trabalhou-se um conjunto de dados da especialidade de Ginecologia/Obstetrícia (GIN/OBS), a partir do qual se construiu uma metodologia de análise inovadora na aplicação de Customer Relationship Management (CRM) a esta especialidade, e que permite extrair conhecimento útil sobre o seu comportamento. A criação de perfis de utente, através da construção de métricas agregadas, permitiu aferir condicionantes do negócio, como a utilização de Entidades Financiadoras de Referência (EFR’s) e o desempenho de médicos em número de partos, a georreferenciação de utentes, e a segmentação de clientes por valor. Este conhecimento, em conjunto com dados da literatura e da análise do mercado das maternidades privadas, permitiu definir diretrizes de atuação de marketing que podem ser aplicáveis a vários níveis da organização, visando o aumento da quota de mercado de partos do prestador. Organizações de saúde que sigam esta metodologia poderão conhecer melhor os seus clientes, criando uma estratégia de CRM, com vista ao aumento do número de partos.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The purpose of this project was to diagnose and estimate the possible value to add to the current loyalty program of Galp and to explore possible redefinitions to the loyalty approach. In order to do that it was performed a deep benchmarking about the company, exhaustive research on the existent data about loyalty and loyalty programs, new data mining with quantitative and qualitative analysis, exploratory market research and ideation sessions. Based on all the work developed, a group of five changes of paradigm were suggested through structured and innovative ideas to answer the challenge proposed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Based in internet growth, through semantic web, together with communication speed improvement and fast development of storage device sizes, data and information volume rises considerably every day. Because of this, in the last few years there has been a growing interest in structures for formal representation with suitable characteristics, such as the possibility to organize data and information, as well as the reuse of its contents aimed for the generation of new knowledge. Controlled Vocabulary, specifically Ontologies, present themselves in the lead as one of such structures of representation with high potential. Not only allow for data representation, as well as the reuse of such data for knowledge extraction, coupled with its subsequent storage through not so complex formalisms. However, for the purpose of assuring that ontology knowledge is always up to date, they need maintenance. Ontology Learning is an area which studies the details of update and maintenance of ontologies. It is worth noting that relevant literature already presents first results on automatic maintenance of ontologies, but still in a very early stage. Human-based processes are still the current way to update and maintain an ontology, which turns this into a cumbersome task. The generation of new knowledge aimed for ontology growth can be done based in Data Mining techniques, which is an area that studies techniques for data processing, pattern discovery and knowledge extraction in IT systems. This work aims at proposing a novel semi-automatic method for knowledge extraction from unstructured data sources, using Data Mining techniques, namely through pattern discovery, focused in improving the precision of concept and its semantic relations present in an ontology. In order to verify the applicability of the proposed method, a proof of concept was developed, presenting its results, which were applied in building and construction sector.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Data Mining surge, hoje em dia, como uma ferramenta importante e crucial para o sucesso de um negócio. O considerável volume de dados que atualmente se encontra disponível, por si só, não traz valor acrescentado. No entanto, as ferramentas de Data Mining, capazes de transformar dados e mais dados em conhecimento, vêm colmatar esta lacuna, constituindo, assim, um trunfo que ninguém quer perder. O presente trabalho foca-se na utilização das técnicas de Data Mining no âmbito da atividade bancária, mais concretamente na sua atividade de telemarketing. Neste trabalho são aplicados catorze algoritmos a uma base de dados proveniente do call center de um banco português, resultante de uma campanha para a angariação de clientes para depósitos a prazo com taxas de juro favoráveis. Os catorze algoritmos aplicados no caso prático deste projeto podem ser agrupados em sete grupos: Árvores de Decisão, Redes Neuronais, Support Vector Machine, Voted Perceptron, métodos Ensemble, aprendizagem Bayesiana e Regressões. De forma a beneficiar, ainda mais, do que a área de Data Mining tem para oferecer, este trabalho incide ainda sobre o redimensionamento da base de dados em questão, através da aplicação de duas estratégias de seleção de atributos: Best First e Genetic Search. Um dos objetivos deste trabalho prende-se com a comparação dos resultados obtidos com os resultados presentes no estudo dos autores Sérgio Moro, Raul Laureano e Paulo Cortez (Sérgio Moro, Laureano, & Cortez, 2011). Adicionalmente, pretende-se identificar as variáveis mais relevantes aquando da identificação do potencial cliente deste produto financeiro. Como principais conclusões, depreende-se que os resultados obtidos são comparáveis com os resultados publicados pelos autores mencionados, sendo os mesmos de qualidade e consistentes. O algoritmo Bagging é o que apresenta melhores resultados e a variável referente à duração da chamada telefónica é a que mais influencia o sucesso de campanhas similares.