542 resultados para Cyclin A_1


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Three gene products, including Myc and the D- and E-type G1 cyclins, are rate limiting for G1 progression in mammalian fibroblasts. Quiescent mouse NIH 3T3 fibroblasts engineered to express a mutant colony-stimulating factor (CSF-1) receptor (CSF-1R 809F) fail to synthesize c-myc and cyclin D1 mRNAs upon CSF-1 stimulation and remain arrested in early G1 phase. Ectopic expression of c-myc or either of three D-type cyclin genes, but not cyclin E, resensitized these cells to the mitogenic effects of CSF-1, enabling them to proliferate continuously in liquid culture and to form colonies in agar in response to the growth factor. Rescue by cyclin D1 was enhanced by c-myc but not by cyclin E and was reversed by infecting cyclin D1-reconstituted cells with a retroviral vector encoding catalytically inactive cyclin-dependent kinase 4. Induction of cyclin D1 mRNA by CSF-1 was restored in cells forced to express c-myc, and vice versa, suggesting that expression of the two genes is interdependent. Cells reconstituted with c-myc were prevented from entering S phase when microinjected with a monoclonal antibody to cyclin D1, and conversely, those rescued by cyclin D1 were inhibited from forming CSF-1-dependent colonies when challenged with a dominant-negative c-myc mutant. Cyclin D mutants defective in binding to the retinoblastoma protein were impaired in rescuing mitogenic signaling. Therefore, Myc and D-type cyclins collaborate during the mitogenic response to CSF-1, whereas cyclin E functions in a separate pathway.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

p16ink4 has been implicated as a tumor suppressor that is lost from a variety of human tumors and human cell lines. p16ink4 specifically binds and inhibits the cyclin-dependent kinases 4 and 6. In vitro, these kinases can phosphorylate the product of the retinoblastoma tumor suppressor gene. Thus, p16ink4 could exert its function as tumor suppressor through inhibition of phosphorylation and functional inactivation of the retinoblastoma protein. Here we show that overexpression of p16ink4 in certain cell types will lead to an arrest in the G1 phase of the cell cycle. In addition, we show that p16ink4 can only suppress the growth of human cells that contain functional pRB. Moreover, we have compared the effect of p16ink4 expression on embryo fibroblasts from wild-type and RB homozygous mutant mice. Wild-type embryo fibroblasts are inhibited by p16ink4, whereas the RB nullizygous fibroblasts are not. These data not only show that the presence of pRB is crucial for growth suppression by p16ink4 but also indicate that the pRB is the critical target acted upon by cyclin D-dependent kinases in the G1 phase of the cell cycle.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have developed methods to use anticyclin A, B, and E antibodies as reagents to specifically detect proliferating cells in specific phases of the cell cycle in formalin-fixed, paraffin-embedded sections of tissues and cells. Staining of 48 archival cases of breast cancer showed that these antibodies estimate the tumor proliferation fraction and therefore are potentially useful for the prediction of prognosis. A subset of cancers had a high frequency of tumor cells expressing cyclins A and E, out of proportion to other proliferation markers, suggesting that these tumors may have deregulated cyclin expression. In addition to recognizing authentic cyclin E in the nucleus of proliferating cells, anticyclin E antibody cross-reacted with a cytoplasmic protein in nonproliferating endothelial cells. This cross-reaction allows the simultaneous visualization and quantitation of microvessels in the tumors, measuring a second potential predictor of breast cancer prognosis, tumor angiogenesis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The mechanism of cell cycle withdrawal during terminal differentiation is poorly understood. We report here that the cyclin-dependent kinase (CDK) inhibitor p21Cip1/WAF1 is induced at early times of both keratinocyte and myoblast differentiation. p21Cip1/WAF1 induction is accompanied by a drastic inhibition of total Cdk2, as well as p21Cip1/WAF1-associated CDK kinase activities. p21Cip1/WAF1 has been implicated in p53-mediated G1 arrest and apoptosis. In keratinocyte differentiation, Cip1/WAF1 induction is observed even in cells derived from p53-null mice. Similarly, keratinocyte differentiation is associated with induction of Cip1/WAF1 promoter activity in both wild-type and p53-negative keratinocytes. Induction of the Cip1/WAF1 promoter upon differentiation is abolished by expression of an adenovirus E1A oncoprotein (d1922/947), which is unable to bind p105-Rb, p107, or cyclin A but which still binds the nuclear phosphoprotein p300. Overexpression of p300 can suppress the E1A effect, independent of its direct binding to E1A. Thus, terminal differentiation-induced growth arrest in both keratinocyte and myoblast systems is associated with induction of Cip1/WAF1 expression. During keratinocyte differentiation, Cip1/WAF1 induction does not require p53 but depends on the transcriptional modulator p300.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A plethora of extracellular signals is known to induce a common set of immediate early genes. The immediate early response, therefore, must not be sufficient to determine the biological outcome. An example of this is found with the phorbol ester 12-O-tetradecanoylphorbol 13-acetate (TPA). A potent activator of protein kinase C, TPA can either stimulate or inhibit cell proliferation, depending on the cell type. This cell context-dependent response to TPA is observed with two subclones of NIH 3T3 cells, the P- and the N-3T3 clones. TPA is a mitogen for the P-3T3 but an antimitogen for the N-3T3 cells. The immediate early pathway is activated by TPA in both cell types, indicating that this pathway alone does not activate DNA synthesis. The delayed induction of cyclin D1 expression by TPA is observed only in the P-3T3 cells, correlating with mitogenesis. N-Acetylcysteine does not affect the immediate early pathway but can inhibit the TPA-mediated induction of cyclin D1 and DNA synthesis. In the N-3T3 cells, TPA causes an inhibition of the cyclin E-associated kinase at the G1/S transition, correlating with growth inhibition. The growth-inhibitory activity of TPA is not affected by N-acetylcysteine. Thus, the two TPA-regulated G1 pathways can be distinguished by their sensitivity to N-acetylcysteine. These results demonstrate that TPA can activate alternative G1 pathways. Moreover, the selection of the alternative G1 pathways is determined by the cell context, which, in turn, dictates the biological response to TPA.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Phosphorylation of the carboxyl-terminal domain (CTD) of the large subunit of RNA polymerase II has been suggested to be critical for transcription initiation, activation, or elongation. A kinase activity specific for CTD is a component of the general transcription factor TFIIH. Recently, a cyclin-dependent kinase-activator kinase (MO15 and cyclin H) was found to be associated with TFIIH preparations and was suggested to be the CTD kinase. TFIIH preparations containing mutant, kinase-deficient MO15 lack CTD kinase activity, indicating that MO15 is critical for polymerase phosphorylation. Nonetheless, these mutant TFIIH preparations were fully functional (in vitro) in both basal and activated transcription. These results indicate that CTD phosphorylation is not required for transcription with a highly purified system.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

p21Sdi1 (also known as Cip1 and Waf1), an inhibitor of DNA synthesis cloned from senescent human fibroblasts, is an inhibitor of G1 cyclin-dependent kinases (Cdks) in vitro and is transcriptionally regulated by wild-type p53. In addition, p21Sdi1 has been found to inhibit DNA replication by direct interaction with proliferating cell nuclear antigen. In this study we analyzed normal human fibroblast cells arrested in G0 and determined that an excess of p21Sdi1 was present after immunodepletion of various cyclins and Cdks, in contrast to mitogen-stimulated cells in early S phase. Expression of antisense p21Sdi1 RNA in G0-arrested cells resulted in induction of DNA synthesis as well as entry into mitosis. These results suggest that p21Sdi1 functions in G0 and early G1 and that decreased expression of the gene is necessary for cell cycle progression.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The trimeric human single-stranded DNA-binding protein (HSSB; also called RP-A) plays an essential role in DNA replication, nucleotide excision repair, and homologous DNA recombination. The p34 subunit of HSSB is phosphorylated at the G1/S boundary of the cell cycle or upon exposure of cells to DNA damage-inducing agents including ionizing and UV radiation. We have previously shown that the phosphorylation of p34 is catalyzed by both cyclin-dependent kinase-cyclin A complex and DNA-dependent protein kinase. In this study, we investigated the effect of phosphorylation of p34 by these kinases on the replication and repair function of HSSB. We observed no significant difference with the unphosphorylated and phosphorylated forms of HSSB in the simian virus 40 DNA replication or nucleotide excision repair systems reconstituted with purified proteins. The phosphorylation status of the p34 subunit of HSSB was unchanged during the reactions. We suggest that the phosphorylated HSSB has no direct effect on the basic mechanism of DNA replication and nucleotide excision repair reactions in vitro, although we cannot exclude a role of p34 phosphorylation in modulating HSSB function in vivo through a yet poorly understood control pathway in the cellular response to DNA damage and replication.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Studies of the temperature-sensitive cdc37-1 mutant of Saccharomyces cerevisiae suggest that Cdc37 is required for passage through the G1 phase of the cell cycle, but its precise function is not known. We have investigated the role of Cdc37 in the regulation of the cyclin-dependent protein kinase Cdc28. We find that G1 arrest in the cdc37-1 mutant is accompanied by a decrease in the Cdc28 activity associated with the G1 cyclin Cln2. This defect appears to be caused by a decrease in the binding of Cdc28 and Cln2. cdc37-1 mutants also exhibit a defect in the binding and activation of Cdc28 by the mitotic cyclin Clb2. Thus Cdc37 may be a regulator that is required for the association of Cdc28 with multiple cyclins.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tese de mestrado, Biologia Molecular e Genética, Universidade de Lisboa, Faculdade de Ciências, 2016

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Un dérèglement du cycle cellulaire peut causer le cancer. Lors de la cytocinèse un anneau contractile d’actine et de myosine se forme, se contracte, et donne un anneau du midbody qui mène à l’abscision. Le processus de cytocinèse est sous le contrôle de protéines telles que la GTPase Rho qui active la cytocinèse et les cyclines-Cdks qui l'inhibent. La Drosophile possède 3 cyclines mitotiques CycA/ CycB/ CycB3 qui sont successivement dégradées en fin de mitose et permettent l'initiation de la cytocinèse. La dernière étape d’abscission est un phénomène qui reste encore peu connu. Les protéines Vps4 et CHMP4C liées à ANCHR vont, sous la dépendance de la kinase Aurora B, promouvoir l’abscision mais, suite à quelques études récentes, il semble y avoir une implication de la cycline B. Ici, le but était de tester l’implication de cette cycline dans les processus de cytocinèse et d’abscision, elle a été menée par microscopie à haute résolution en temps réel avec des cellules S2 de l’organisme Drosophila melanogaster par le suivi de protéines recombinantes fluorescentes. L’étude a été divisée en deux axes : gain et perte de fonction par l’intermédiaire respectivement de la protéine Cycline B recombinante stable, non dégradable (CycBstable-GFP) et l’inhibition par l’utilisation d’ARN double brin (ARNdb) sur l’endogène. La CycBstable-GFP a perturbé la cytocinèse en induisant plusieurs anneaux contractiles et midbodies. En revanche la réduction de l’expression de CycB n'a pas eu d’effet observable, et elle ne semble pas avoir d’action sur l’abscission malgré le recrutement de CycB-GFP au midbody tardif. En revanche la protéine Cdk1 semble avoir un rôle dans l'abscision puisque sa réduction d’expression a induit un délai. Elle a donc une implication potentielle sur la cytocinèse.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Eukaryotic cells use two principal mechanisms for repairing DNA double-strand breaks (DSBs): homologous recombination (HR) and nonhomologous end-joining (NHEJ). DSB repair pathway choice is strongly regulated during the cell cycle. Cyclin-dependent kinase 1 (Cdk1) activates HR by phosphorylation of key recombination factors. However, a mechanism for regulating the NHEJ pathway has not been established. Here, we report that Xlf1, a fission yeast XLF ortholog, is a key regulator of NHEJ activity in the cell cycle. We show that Cdk1 phosphorylates residues in the C terminus of Xlf1 over the course of the cell cycle. Mutation of these residues leads to the loss of Cdk1 phosphorylation, resulting in elevated levels of NHEJ repair in vivo. Together, these data establish that Xlf1 phosphorylation by Cdc2(Cdk1) provides a molecular mechanism for downregulation of NHEJ in fission yeast and indicates that XLF is a key regulator of end-joining processes in eukaryotic organisms.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Centromeres form the site of chromosome attachment to microtubules during mitosis. Identity of these loci is maintained epigenetically by nucleosomes containing the histone H3 variant CENP-A. Propagation of CENP-A chromatin is uncoupled from DNA replication initiating only during mitotic exit. We now demonstrate that inhibition of Cdk1 and Cdk2 activities is sufficient to trigger CENP-A assembly throughout the cell cycle in a manner dependent on the canonical CENP-A assembly machinery. We further show that the key CENP-A assembly factor Mis18BP1(HsKNL2) is phosphorylated in a cell cycle-dependent manner that controls its centromere localization during mitotic exit. These results strongly support a model in which the CENP-A assembly machinery is poised for activation throughout the cell cycle but kept in an inactive noncentromeric state by Cdk activity during S, G2, and M phases. Alleviation of this inhibition in G1 phase ensures tight coupling between DNA replication, cell division, and subsequent centromere maturation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sister chromatid cohesion, mediated by the cohesin complex, is essential for faithful mitosis. Nevertheless, evidence suggests that the surveillance mechanism that governs mitotic fidelity, the spindle assembly checkpoint (SAC), is not robust enough to halt cell division when cohesion loss occurs prematurely. The mechanism behind this poor response is not properly understood. Using developing Drosophila brains, we show that full sister chromatid separation elicits a weak checkpoint response resulting in abnormal mitotic exit after a short delay. Quantitative live-cell imaging approaches combined with mathematical modeling indicate that weak SAC activation upon cohesion loss is caused by weak signal generation. This is further attenuated by several feedback loops in the mitotic signaling network. We propose that multiple feedback loops involving cyclin-dependent kinase 1 (Cdk1) gradually impair error-correction efficiency and accelerate mitotic exit upon premature loss of cohesion. Our findings explain how cohesion defects may escape SAC surveillance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Medical Research Council; Wellcome Trust; European Research Council.