812 resultados para Computer-Aided Engineering (CAD, CAE)
Resumo:
This paper introduces PSOPT, an open source optimal control solver written in C++. PSOPT uses pseudospectral and local discretizations, sparse nonlinear programming, automatic differentiation, and it incorporates automatic scaling and mesh refinement facilities. The software is able to solve complex optimal control problems including multiple phases, delayed differential equations, nonlinear path constraints, interior point constraints, integral constraints, and free initial and/or final times. The software does not require any non-free platform to run, not even the operating system, as it is able to run under Linux. Additionally, the software generates plots as well as LATEX code so that its results can easily be included in publications. An illustrative example is provided.
Resumo:
This research presents a novel multi-functional system for medical Imaging-enabled Assistive Diagnosis (IAD). Although the IAD demonstrator has focused on abdominal images and supports the clinical diagnosis of kidneys using CT/MRI imaging, it can be adapted to work on image delineation, annotation and 3D real-size volumetric modelling of other organ structures such as the brain, spine, etc. The IAD provides advanced real-time 3D visualisation and measurements with fully automated functionalities as developed in two stages. In the first stage, via the clinically driven user interface, specialist clinicians use CT/MRI imaging datasets to accurately delineate and annotate the kidneys and their possible abnormalities, thus creating “3D Golden Standard Models”. Based on these models, in the second stage, clinical support staff i.e. medical technicians interactively define model-based rules and parameters for the integrated “Automatic Recognition Framework” to achieve results which are closest to that of the clinicians. These specific rules and parameters are stored in “Templates” and can later be used by any clinician to automatically identify organ structures i.e. kidneys and their possible abnormalities. The system also supports the transmission of these “Templates” to another expert for a second opinion. A 3D model of the body, the organs and their possible pathology with real metrics is also integrated. The automatic functionality was tested on eleven MRI datasets (comprising of 286 images) and the 3D models were validated by comparing them with the metrics from the corresponding “3D Golden Standard Models”. The system provides metrics for the evaluation of the results, in terms of Accuracy, Precision, Sensitivity, Specificity and Dice Similarity Coefficient (DSC) so as to enable benchmarking of its performance. The first IAD prototype has produced promising results as its performance accuracy based on the most widely deployed evaluation metric, DSC, yields 97% for the recognition of kidneys and 96% for their abnormalities; whilst across all the above evaluation metrics its performance ranges between 96% and 100%. Further development of the IAD system is in progress to extend and evaluate its clinical diagnostic support capability through development and integration of additional algorithms to offer fully computer-aided identification of other organs and their abnormalities based on CT/MRI/Ultra-sound Imaging.
Resumo:
The most significant radiation field nonuniformity is the well-known Heel effect. This nonuniform beam effect has a negative influence on the results of computer-aided diagnosis of mammograms, which is frequently used for early cancer detection. This paper presents a method to correct all pixels in the mammography image according to the excess or lack on radiation to which these have been submitted as a result of the this effect. The current simulation method calculates the intensities at all points of the image plane. In the simulated image, the percentage of radiation received by all the points takes the center of the field as reference. In the digitized mammography, the percentages of the optical density of all the pixels of the analyzed image are also calculated. The Heel effect causes a Gaussian distribution around the anode-cathode axis and a logarithmic distribution parallel to this axis. Those characteristic distributions are used to determine the center of the radiation field as well as the cathode-anode axis, allowing for the automatic determination of the correlation between these two sets of data. The measurements obtained with our proposed method differs on average by 2.49 mm in the direction perpendicular to the anode-cathode axis and 2.02 mm parallel to the anode-cathode axis of commercial equipment. The method eliminates around 94% of the Heel effect in the radiological image and the objects will reflect their x-ray absorption. To evaluate this method, experimental data was taken from known objects, but could also be done with clinical and digital images.
Resumo:
In medical processes where ionizing radiation is used, dose planning and dose delivery are the key elements to patient safety and treatment success, particularly, when the delivered dose in a single session of treatment can be an order of magnitude higher than the regular doses of radiotherapy. Therefore, the radiation dose should be well defined and precisely delivered to the target while minimizing radiation exposure to surrounding normal tissues [1]. Several methods have been proposed to obtain three-dimensional (3-D) dose distribution [2, 3]. In this paper, we propose an alternative method, which can be easily implemented in any stereotactic radiosurgery center with a magnetic resonance imaging (MRI) facility. A phantom with or without scattering centers filled with Fricke gel solution is irradiated with Gamma Knife(A (R)) system at a chosen spot. The phantom can be a replica of a human organ such as head, breast or any other organ. It can even be constructed from a real 3-D MR image of an organ of a patient using a computer-aided construction and irradiated at a specific region corresponding to the tumor position determined by MRI. The spin-lattice relaxation time T (1) of different parts of the irradiated phantom is determined by localized spectroscopy. The T (1)-weighted phantom images are used to correlate the image pixels intensity to the absorbed dose and consequently a 3-D dose distribution with a high resolution is obtained.
Resumo:
Two targets, reverse transcriptase (RT) and protease from HIV-1, were used during the past two decades to the discovery of non-nucleoside reverse transcriptase inhibitors (NNRTI) and protease inhibitors (PI) that belong to the arsenal of the antiretroviral therapy. Herein these enzymes were chosen as templates for conducting a computer-aided ligand design. Ligand and structure-based drug designs were the starting points to select compounds from a database bearing more than five million compounds by means of cheminformatic tools. New promising lead structures are retrieved from the database, which are open to acquisition and test. Classes of molecules already described as NNRTI or PI in the literature also came out and were useful to prove the reliability of the workflow, and thus validating the work carried out so far. (c) 2007 Elsevier Masson SAS. All rights reserved.
Resumo:
Alzheimer`s disease is an ultimately fatal neurodegenerative disease, and BACE-1 has become an attractive validated target for its therapy, with more than a hundred crystal structures deposited in the PDB. In the present study, we present a new methodology that integrates ligand-based methods with structural information derived from the receptor. 128 BACE-1 inhibitors recently disclosed by GlaxoSmithKline R&D were selected specifically because the crystal structures of 9 of these compounds complexed to BACE-1, as well as five closely related analogs, have been made available. A new fragment-guided approach was designed to incorporate this wealth of structural information into a CoMFA study, and the methodology was systematically compared to other popular approaches, such as docking, for generating a molecular alignment. The influence of the partial charges calculation method was also analyzed. Several consistent and predictive models are reported, including one with r (2) = 0.88, q (2) = 0.69 and r (pred) (2) = 0.72. The models obtained with the new methodology performed consistently better than those obtained by other methodologies, particularly in terms of external predictive power. The visual analyses of the contour maps in the context of the enzyme drew attention to a number of possible opportunities for the development of analogs with improved potency. These results suggest that 3D-QSAR studies may benefit from the additional structural information added by the presented methodology.
Resumo:
The introduction of a new technology High Speed Downlink Packet Access (HSDPA) in the Release 5 of the 3GPP specifications raises the question about its performance capabilities. HSDPA is a promising technology which gives theoretical rates up to 14.4 Mbits. The main objective of this thesis is to discuss the system level performance of HSDPAMainly the thesis exploration focuses on the Packet Scheduler because it is the central entity of the HSDPA design. Due to its function, the Packet Scheduler has a direct impact on the HSDPA system performance. Similarly, it also determines the end user performance, and more specifically the relative performance between the users in the cell.The thesis analyzes several Packet Scheduling algorithms that can optimize the trade-off between system capacity and end user performance for the traffic classes targeted in this thesis.The performance evaluation of the algorithms in the HSDPA system are carried out under computer aided simulations that are assessed under realistic conditions to predict the results as precise on the algorithms efficiency. The simulation of the HSDPA system and the algorithms are coded in C/C++ language
Resumo:
The modern society depends on an efficient communications system able to of transmitting and receiving information with a higher speed and reliability every time. The need for ever more efficient devices raises optimization techniques of microstrip devices, such as techniques to increase bandwidth: thicker substrates and substrate structures with EBG (Electromagnetic Band Gap) and PBG (Photonic Band Gap). This work has how aims the study of the application of PBG materials on substrates of planar structures in microstrip, more precisely in directional quadrature couplers and in rat-race and impedance of transformers. A study of the planar structures in microstrip and substrates EBG is presented. The PBG substrates can be used to optimize the radiation through the air, thus reducing the occurrence of surface waves and the resulting diffraction edge responsible for degradation of radiation pattern. Through specific programs in FORTRAN Power Station obtained the frequencies and couplings for each structure. Are used the program PACMO - Computer Aided Design in Microwave. Results are obtained of the frequency and coupling devices, ranging the frequency band used (cellular communication and Wimax systems) and the permittivity of the substrate, comparing the results of conventional material and PBG materials in the s and p polarizations.
Resumo:
The vision is one of the five senses of the human body and, in children is responsible for up to 80% of the perception of world around. Studies show that 50% of children with multiple disabilities have some visual impairment, and 4% of all children are diagnosed with strabismus. The strabismus is an eye disability associated with handling capacity of the eye, defined as any deviation from perfect ocular alignment. Besides of aesthetic aspect, the child may report blurred or double vision . Ophthalmological cases not diagnosed correctly are reasons for many school abandonments. The Ministry of Education of Brazil points to the visually impaired as a challenge to the educators of children, particularly in literacy process. The traditional eye examination for diagnosis of strabismus can be accomplished by inducing the eye movements through the doctor s instructions to the patient. This procedure can be played through the computer aided analysis of images captured on video. This paper presents a proposal for distributed system to assist health professionals in remote diagnosis of visual impairment associated with motor abilities of the eye, such as strabismus. It is hoped through this proposal to contribute improving the rates of school learning for children, allowing better diagnosis and, consequently, the student accompaniment
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
We present algorithms for computing the differential geometry properties of intersection Curves of three implicit surfaces in R(4), using the implicit function theorem and generalizing the method of X. Ye and T. Maekawa for 4-dimension. We derive t, n, b(1), b(2) vectors and curvatures (k(1), k(2), k(3)) for transversal intersections of the intersection problem. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The great interest observed in wireless communication systems has required the development of new configurations of microstrip antennas, because they are easily built and integrated to other microwave circuit components, which is suitable for the construction and development of planar antenna arrays and microwave integrated circuits. This work presents a new configuration of tapered microstrip antenna, which is obtained by impressing U-slots on the conducting patch combined with a transmission line matching circuit that uses an inset length. It is shown that the use of U-slots in the microstrip antenna conducting patch excites new resonating modes, that gives a multiband characteristic for the slotted microstrip antenna, that is suitable for applications in communication systems that operates several frequencies simultaneously. Up to this date, the works reported in the literature deals with the use of Uslotted microstrip rectangular antennas fed by a coaxial probe. The properties of a linear array of microstrip patch tapered antennas are also investigated. The main parameters of the U slotted tapered microstrip antennas are investigated for different sizes and locations of the slots impressed on the conducting patch. The analysis of the proposed antenna is performed by using the resonant cavity and equivalent transmission line methods, in combination with a parametric study, that is conducted by the use of the Ansoft Designer, a commercial computer aided microwave software well known by its accuracy and efficiency. The mentioned methods are used to evaluate the effect in the antennas parameters, like resonant frequency and return loss, produced by variations of the antenna structural parameters, accomplished separately or simultaneously. An experimental investigation is also developed, that consists of the design, construction and measurement of several U slotted microstrip antenna prototypes. Finally, theoretical and simulated results are presented that are in agreement with the measured ones. These results are related to the resonating modes identification and to the determination of the main characteristics of the investigated antennas, such as resonant frequency, return loss, and radiation pattern
Resumo:
The aim of present study was to evaluate frozen canine semen with ACP-106 (R) (Powder Coconut Water) using an in vitro sperm-oocyte interaction assay (SOIA). Ten ejaculates from five stud dogs were diluted in ACP-106 (R) containing 20% egg yolk, submitted to cooling in a thermal box for 40 min and in a refrigerator for 30 min. After this period, a second dilution was performed using ACP-106 (R) containing 20% egg yolk and 12% glycerol. Samples were thawed at 38 degrees C for 1 min. Post-thaw motility was evaluated by light microscopy and by using a computer aided semen analysis (CASA). Plasma membrane integrity and sperm morphology/acrosomal status were evaluated by fluorescent probes (C-FDA/PI) and Bengal Rose respectively. Moreover, frozen-thawed semen was analysed by a SOIA. Subjective post-thaw motility was 52.0 +/- 14.8% and it was significant higher than the total motility estimated by CASA (23.0 +/- 14.8%) because this system considered the egg yolk debris as immotile spermatozoa. Although normal sperm rate and acrosomal integrity evaluated by Bengal Rose stain was 89.6 +/- 3.1 % and 94.3 +/- 3.1 %, respectively, post-thaw percentage of intact plasma membrane was only 35.1 +/- 14.3%. Regarding SOIA, the percentage of interacted oocytes (bound, penetrated and bound and/or penetrated) was 75.3%. Using regression analysis, it was found significant relations between some CASA patterns and data for SOIA. In conclusion, the freezing-thawing procedure using ACP-106 (R) was efficient for maintain the in vitro fertility potential of dog spermatozoa.