966 resultados para Classical hydraulic jump
Resumo:
In this paper we relate the numerical invariants attached to a projective curve, called the order sequence of the curve, to the geometry of the varieties of tangent linear spaces to the curve and to the Gauss maps of the curve. © 1992 Sociedade Brasileira de Matemática.
Resumo:
The Birkhoff-Gustavson normal form is employed to study separately chaos and resonances in a system with two degrees of freedom. In the integrable regime, tunnelling effects are appreciable when the nearest level spacings show oscillations. Tunnelling among states in the libration and rotation tori regions is also observed. The regularity of avoided crossings due to tunnelling indicates a collective effect and is associated with an isolated resonance. The spectral fluctuations also show a strong level correlation. The Husimi distribution, on the other hand, is insensitive to avoided crossings. An integrable approximation to the overlap of resonances is obtained and a theoretical description is given for an isolated cubic resonance plus a complex orbit. In the non-integrable regime chaos is stronger after overlapping and preferentially at low energies.
Resumo:
In the usual supersymmetric quantum mechanics, the supercharges change the eigenfunction from the bosonic to fermionic sector and conversely. The classical correspondent of this transformation is shown to be the addition of a total time derivative of a purely imaginary function to the Lagrangian function of the system.
Resumo:
Classical shell-and-tube heat exchangers are usually equipped with segmental baffles. These baffles serve two basic functions: (a) they provide tube supports, thereby preventing or reducing mechanical problems, such as sagging or vibration; (b) they direct the fluid flow over the tubes so as to introduce a cross-flow component, thereby increasing the heat transfer. Segmented baffles have several sources of performance loss, some due to various leakage flows and others caused by stagnation zones. A new concept of longitudinal flow heat exchanger - based on placing twisted tapes along the tube bundle subchannels - was developed to mitigate drawbacks of other types of tubular heat exchangers. In this paper, a numerical model has been implemented in order to simulate the thermal-hydraulic feature of tubular heat exchangers equipped either with segmental baffles or with subchannel twisted tapes. The tube bundle has been described by means of an equivalent porous medium type model, allowing a macroscopic description of the shell-side flow. The basic equations - continuity, momentum and energy - have been solved by using the finite volume method. Typical numerical results have been compared with experimental data, reaching a very good agreement. A comparative analysis of different types of heat exchangers has been carried out, revealing the satisfactory thermal-hydraulic efficiency level of the twisted tapes heat exchangers.
Resumo:
Bose-Einstein condensation in an ideal (i.e. interactionless) boson gas can be studied analytically, at university-level statistical and solid state physics, in any positive dimensionality (d > 0) for identical bosons with any positive-exponent (s > 0) energy-momentum (i.e. dispersion) relation. Explicit formulae with arbitrary dls are discussed for: the critical temperature (non-zero only if d/s > 1); the condensate fraction; the internal energy; and the constant-volume specific heat (found to possess a jump discontinuity only if d/s > 2) Classical results are recovered at sufficiently high temperatures. Applications to ordinary' Bose-Einstein condensation, as well as to photons, phonons, ferro-and antiferromagnetic magnons, and (very specially) to Cooper pairs in superconductivity, are mentioned.
Resumo:
This paper is concerned with the stability of discrete-time linear systems subject to random jumps in the parameters, described by an underlying finite-state Markov chain. In the model studied, a stopping time τ Δ is associated with the occurrence of a crucial failure after which the system is brought to a halt for maintenance. The usual stochastic stability concepts and associated results are not indicated, since they are tailored to pure infinite horizon problems. Using the concept named stochastic τ-stability, equivalent conditions to ensure the stochastic stability of the system until the occurrence of τ Δ is obtained. In addition, an intermediary and mixed case for which τ represents the minimum between the occurrence of a fix number N of failures and the occurrence of a crucial failure τ Δ is also considered. Necessary and sufficient conditions to ensure the stochastic τ-stability are provided in this setting that are auxiliary to the main result.
Resumo:
It is proven that the classical pure spinor superstring in an AdS 5 × S5 back-ground has a flat current depending on a continuous parameter. This generalizes the recent result of Bena, et al. for the classical Green-Schwarz superstring. © SISSA/ISAS 2004.
Resumo:
In this work we present a mapping between the classical solutions of the sine-Gordon, Liouville, λφ4 and other kinks in 1+1 dimensions. This is done by using an invariant quantity which relates the models. It is easily shown that this procedure is equivalent to that used to get the so called deformed solitons, as proposed recently by Bazeia et al. [Phys. Rev. D. 66 (2002) 101701(R)]. The classical equivalence is explored in order to relate the solutions of the corresponding models and, as a consequence, try to get new information about them. We discuss also the difficulties and consequences which appear when one tries to extend the deformation in order to take into account the quantum version of the models.
Resumo:
The linear quadratic Gaussian control of discrete-time Markov jump linear systems is addressed in this paper, first for state feedback, and also for dynamic output feedback using state estimation. in the model studied, the problem horizon is defined by a stopping time τ which represents either, the occurrence of a fix number N of failures or repairs (T N), or the occurrence of a crucial failure event (τ δ), after which the system paralyzed. From the constructive method used here a separation principle holds, and the solutions are given in terms of a Kalman filter and a state feedback sequence of controls. The control gains are obtained by recursions from a set of algebraic Riccati equations for the former case or by a coupled set of algebraic Riccati equation for the latter case. Copyright © 2005 IFAC.
Resumo:
An 8051-based microcontroller tester has been designed to reduce troubleshooting time of the Electro-Hydraulic Actuators (EHA) installed in fly-by-wire aircrafts. The tester algorithm first evaluates EHA pressure and position sensor signals to emit either a pass or fail message. The evaluation is based on predefined ranges of EHA pressure and position signals. Next, the instrument tests the EHA response capability - a way of dynamic response evaluation, again issuing a suitable response. The instrument proved to be reliable after being successfully evaluated in laboratory and in a real model test airplane. © 2007 IEEE.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
As far as external gravitational fields described by Newton's theory are concerned, theory shows that there is an unavoidable conflict between the universality of free fall (Galileo's equivalence principle) and quantum mechanics - a result confirmed by experiment. Is this conflict due perhaps to the use of Newton's gravity, instead of general relativity, in the analysis of the external gravitational field? The response is negative. To show this we compute the low corrections to the cross-section for the scattering of different quantum particles by an external gravitational field, treated as an external field, in the framework of Einstein's linearized gravity. To first order the cross-sections are spin-dependent; if the calculations are pushed to the next order they become dependent upon energy as well. Therefore, the Galileo's equivalence and, consequently, the classical equivalence principle, is violated in both cases. We address these issues here.
Resumo:
This study compared the color fidelity of different composite resins with their registration in the Vita Classical Shade Guide. Using a prefabricated Teflon mold, 120 specimens were divided into four groups fn - 30), according to the resin tested. Three subgroups (a = 10) were prepared for each resin group; these subgroups tested enamel shade, dentin shade, and enamel and dentin shade. Three measurements were performed to verily whether the tooth shade matched that of the Vita Classical Shade Guide. The color was evaluated and the shade variations were calculated. The data were submitted to a three-way AN OVA test (time, color match, and composite type), followed by Tukey's test. It was concluded that all composite resins showed color differences in relation to the Vita Classical Shade Guide.