932 resultados para Chemical reaction


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The average time tau(r) for one end of a long, self-avoiding polymer to interact for the first time with a flat penetrable surface to which it is attached at the other end is shown here to scale essentially as the square of the chain's contour length N. This result is obtained within the framework of the Wilemski-Fixman approximation to diffusion-limited reactions, in which the reaction time is expressed as a time correlation function of a ``sink'' term. In the present work, this sink-sink correlation function is calculated using perturbation expansions in the excluded volume and the polymer-surface interactions, with renormalization group methods being used to resum the expansion into a power law form. The quadratic dependence of tau(r) on N mirrors the behavior of the average time tau(c) of a free random walk to cyclize, but contrasts with the cyclization time of a free self-avoiding walk (SAW), for which tau(r) similar to N-2.2. A simulation study by Cheng and Makarov J. Phys. Chem. B 114, 3321 (2010)] of the chain-end reaction time of an SAW on a flat impenetrable surface leads to the same N-2.2 behavior, which is surprising given the reduced conformational space a tethered polymer has to explore in order to react. (C) 2014 AIP Publishing LLC.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Silver nanoparticles-anchored reduced graphene oxide (Ag-RGO) is prepared by simultaneous reduction of graphene oxide and Ag+ ions in an aqueous medium by ethylene glycol as the reducing agent. Ag particles of average size of 4.7 nm were uniformly distributed on the RGO sheets. Oxygen reduction reaction (ORR) is studied on Ag-RGO catalyst in both aqueous and non-aqueous electrolytes by using cyclic voltammetry and rotating disk electrode techniques. As the interest in non-aqueous electrolyte is to study the catalytic performance of Ag-RGO for rechargeable Li-O-2 cells, these cells are assembled and characterized. Li-O-2 cells with Ag-RGO as the oxygen electrode catalyst are subjected to charge-discharge cycling at several current densities. A discharge capacity of 11 950 mA h g(-1) (11.29 mA h cm(-2)) is obtained initially at low current density. Although there is a decrease in the capacity on repeated discharge-charge cycling initially, a stable capacity is observed for about 30 cycles. The results indicate that Ag-RGO is a suitable catalyst for rechargeable Li-O-2 cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Si nanowire growth on sapphire substrates by the vapor-liquid-solid (VLS) method using Au catalyst particles has been studied. Sapphire was chosen as the substrate to ensure that the vapor phase is the only source of Si. Three hitherto unreported observations are described. First, an incubation period of 120-480 s, which is shown to be the incubation period as defined in classical nucleation theory, is reported. This incubation period permits the determination of a desolvation energy of Si from Au-Si alloys of 15 kT. Two, transmission electron microscopy studies of incubation, point to Si loss by reverse reaction as an important part of the mechanism of Si nanowire growth by VLS. Three, calculations using these physico-chemical parameters determined from incubation and measured steady state growth rates of Si nanowires show that wire growth happens from a supersaturated catalyst droplet. (C) 2015 AIP Publishing LLC.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A plausible microkinetic model has been proposed for the CO oxidation reaction catalysed by palladium (Pd) with the kinetic parameters obtained from the literature. A robust rate expression using the reaction route analysis has been developed for the presented microkinetic scheme and the obtained rate expressions have been validated against the experimental data presented in the literature. A wide range of experimental conditions ranging from single Pd crystals under ultra-high vacuum conditions and impregnated Pd used for fixed bed experiments under atmospheric pressure has been used to validate the reaction mechanism. (C) 2015 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Temperature dependent reaction products are observed when borohydride is present in aqueous solutions containing Ir3+. At temperatures of 40 degrees C and above, metallic iridium is formed while under ambient conditions of 25 degrees C, borohydride results in an alkaline environment that helps in hydrolyzing the precursor to form IrO2. The Ir foams and IrO2 are subsequently used to study their catalytic properties.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Large-scale production of hydrogen gas by water electrolysis is hindered by the sluggish kinetics of oxygen evolution reaction (OER) at the anode. The development of a highly active and stable catalyst for OER is a challenging task. Electrochemically prepared amorphous metal-based catalysts have gained wide attention after the recent discovery of a cnbalt-phosphate (Co-Pi) catalyst: Herein, an amorphous iridium-phosphate (Ir-Pi) is investigated as an oxygen evolution catalyst. The catalyst is prepared by the anodic polarization of carbon paper electrodes in neutral phosphate buffer solutions containing IrCl3. The Ir-Pi film deposited on the substrate has significant amounts of phosphate and It centers in an oxidation state higher than +4. Phosphate plays a significant role in the deposition of the catalyst and also in its activity toward OER. The onset potential of OER on the Ir-Pi is about 150 mV lower in comparison with the Co-Pi under identical experimental conditions. Thus, Ir-Pi is a promising catalyst for electrochemical oxidation of water.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Formic acid, the simplest carboxylic acid, is found in nature or can be easily synthesized in the laboratory (major by-product of some second generation biorefinery processes); it is also an important chemical due to its myriad applications in pharmaceuticals and industry. In recent years, formic acid has been used as an important fuel either without reformation (in direct formic acid fuel cells, DFAFCs) or with reformation (as a potential chemical hydrogen storage material). Owing to the better efficiency of DFAFCs compared to several other PEMFCs and reversible hydrogen storage systems, formic acid could serve as one of the better fuels for portable devices, vehicles and other energy-related applications in the future. This perspective is focused on recent developments in the use of formic acid as a reversible source for hydrogen storage. Recent developments in this direction will likely give access to a variety of low-cost and highly efficient rechargeable hydrogen fuel cells within the next few years by the use of suitable homogeneous metal complex/heterogeneous metal nanoparticle-based catalysts under ambient reaction conditions. The production of formic acid from atmospheric CO2 (a greenhouse gas) will decrease the CO2 content and may be helpful in reducing global warming.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Electrically conducting, continuous films of different phases of palladium selenides are synthesized by the thermolysis of single source molecular precursors. The films are found to be adherent on flat substrates such as glass, indium tin oxide and glassy carbon and are stable under electrochemical conditions. They are electrocatalytically active and in particular, for hydrogen evolution reaction. Catalytic activities with low Tafel slopes of 50-60 mV per decade are observed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The electron recombination lifetime in a sensitized semiconductor assembly is greatly influenced by the crystal structure and geometric form of the light-harvesting semiconductor nanocrystal. When such light harvesters with varying structural characteristics are configured in a photoanode, its interface with the electrolyte becomes equally important and directly influences the photovoltaic efficiency. We have systematically probed here the influence of nanocrystal crystallographic structure and shape on the electron recombination lifetime and its eventual influence on the light to electricity conversion efficiency of a liquid junction semiconductor sensitized solar cell. The light-harvesting cadmium sulfide (CdS) nanocrystals of distinctly different and controlled shapes are obtained using a novel and simple liquid gas phase synthesis method performed at different temperatures involving very short reaction times. High resolution synchrotron X-ray diffraction and spectroscopic studies respectively exhibit different crystallographic phase content and optical properties. When assembled on a mesoscopic TiO2 film by a linker molecule, they exhibit remarkable variation in electron recombination lifetime by 1 order of magnitude, as determined by ac-impedance spectroscopy. This also drastically affects the photovoltaic efficiency of the differently shaped nanocrystal sensitized solar cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The electron recombination lifetime in a sensitized semiconductor assembly is greatly influenced by the crystal structure and geometric form of the light-harvesting semiconductor nanocrystal. When such light harvesters with varying structural characteristics are configured in a photoanode, its interface with the electrolyte becomes equally important and directly influences the photovoltaic efficiency. We have systematically probed here the influence of nanocrystal crystallographic structure and shape on the electron recombination lifetime and its eventual influence on the light to electricity conversion efficiency of a liquid junction semiconductor sensitized solar cell. The light-harvesting cadmium sulfide (CdS) nanocrystals of distinctly different and controlled shapes are obtained using a novel and simple liquid gas phase synthesis method performed at different temperatures involving very short reaction times. High resolution synchrotron X-ray diffraction and spectroscopic studies respectively exhibit different crystallographic phase content and optical properties. When assembled on a mesoscopic TiO2 film by a linker molecule, they exhibit remarkable variation in electron recombination lifetime by 1 order of magnitude, as determined by ac-impedance spectroscopy. This also drastically affects the photovoltaic efficiency of the differently shaped nanocrystal sensitized solar cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study reports a multinuclei in situ (real-time) NMR spectroscopic characterization of the electrochemical reactions of a negative Cu3P electrode toward lithium. Taking advantage of the different nuclear spin characteristics, we have obtained real-time P-31 and Li-7 NMR data for a comprehensive understanding of the electrochemical mechanism during the discharge and charge processes of a lithium battery. The large NMR chemical shift span of P-31 facilitates the observation of the chemical evolutions of different lithiated and delithiated LixCu3-xP phases, whereas the quadrupolar line features in Li-7 enable identification of asymmetric Li sites. These combined NMR data offer an unambiguous identification of four distinct LixCu3-xP phases, Cu3P, Li0.2Cu2.8P, Li2CuP, and. Li3P, and the characterization of their involvement in the electrochemical reactions. The NMR data led us to propose a delithiation process involving the intercalation of metallic Cu-0 atomic aggregates into the Li2CuP structure to form a Cu-0-Li2-xCu1-xP phase. This process might be responsible for the poor capacity retention in Cu3P lithium batteries when cycled to a low voltage.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Chemical-looping combustion (CLC) has the inherent property of separating CO2 from flue gases. Instead of air, it uses an oxygen-carrier, usually in the form of a metal oxide, to provide oxygen for combustion. When used for the combustion of gaseous fuels, such as natural gas, or synthesis gas from the gasification of coal, the technique gives a stream of CO2 which, on an industrial scale, would be sufficiently pure for geological sequestration. An important issue is the form of the metal oxide, since it must retain its reactivity through many cycles of complete reduction and oxidation. Here, we report on the rates of oxidation of one constituent of synthesis gas, H2, by co-precipitated mixtures of CuO+Al2O3 using a laboratory-scale fluidised bed. To minimise the influence of external mass transfer, and also of errors in the measurement of [H2], particles sized to 355-500μm were used at low [H2], with the temperature ranging from 450 to 900°C. Under such conditions, the reaction was slow enough for meaningful measurements of the intrinsic kinetics to be made. The reaction was found to be first order with respect to H2. Above ∼800°C, the reaction of CuO was fast and conformed to the shrinking core mechanism, proceeding via the intermediate, Cu2O, in: 2CuO+H2→Cu2O+H2O, ΔH1073 K0=- 116.8 kJ/mol; Cu2O+H2→2Cu+H2O, ΔH1073 K0-80.9 kJ/mol. After oxidation of the products Cu and Cu2O back to CuO, the kinetics in subsequent cycles of chemical looping oxidation of H2 could be approximated by those in the first. Interestingly, the carrier was found to react at temperatures as low as 300°C. The influence of the number of cycles of reduction and oxidation is explored. Comparisons are drawn with previous work using reduction by CO. Finally, these results indicate that the kinetics of reaction of the oxygen carrier with gasifier synthesis gases is very much faster than rates of gasification of the original fuel. © 2010 The Institution of Chemical Engineers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An immunosensor interface based on mixed hydrophobic self-assembled monolayers (SAMs) of methyl and carboxylic acid terminated thiols with covalently attached human Immunoglobulin G (hIgG), is investigated. The densely packed and organised SAMs were characterised by contact angle measurements and cyclic voltammetry. The effect of the non-ionic surfactant, Tween 20, in preventing nonspecific adsorption is addressed by ellipsometry during physical and covalent hIgG immobilization on pure and mixed SAMs, respectively. It is clearly demonstrated that nonspecific adsorption due to hydrophobic interactions of hIgG on methyl ended groups is totally inhibited, whereas electrostatic/hydrogen bonding interactions with the exposed carboxylic groups prevail in the presence of surfactant. Results of ellipsometry and Atomic Force Microscopy, reveal that the surface concentration of covalently immobilized hIgG is determined by the ratio of COOH/CH3-terminated thiols in SAM forming solution. Moreover, the ellipsometric data demonstrates that the ratio of bound anti-hIgG/hIgG depends on the density of hIgG on the surface and that the highest ratio is close to three. We also report the selectivity and high sensitivity achieved by chronoamperometry in the detection of adsorbed hIgG and the reaction with its antibody.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A mathematical model is presented for the numerical simulation of the flow, temperature, and concentration fields in an rf plasma chemical reactor. The simulation is performed assuming chemical equilibrium. The extent of validity of this assumption is discussed. The system considered is the reaction of SiCl4 and NH3 for the production of Si3N4.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Chlorine oxide species have received considerable attention in recent years due to their central role in the balance of stratospheric ozone. Many questions pertaining to the behavior of such species still remain unanswered and plague the ability of researchers to develop accurate chemical models of the stratosphere. Presented in this thesis are three experiments that study various properties of some specific chlorine oxide species.

In the first chapter, the reaction between ClONO_2 and protonated water clusters is investigated to elucidate a possible reaction mechanism for the heterogeneous reaction of chlorine nitrate on ice. The ionic products were various forms of protonated nitric acid, NO_2 +(H_20)_m, m = 0, 1, 2. These products are analogous to products previously reported in the literature for the neutral reaction occurring on ice surfaces. Our results support the hypothesis that the heterogeneous reaction is acid-catalyzed.

In the second chapter, the photochemistry of ClONO_2 was investigated at two wavelengths, 193 and 248 nm, using the technique of photofragmentation translational spectroscopy. At both wavelengths, the predominant dissociation pathways were Cl + NO_3 and ClO + NO_2. Channel assignments were confirmed by momentum matching the counterfragments from each channel. A one-dimensional stratospheric model using the new 248 nm branching ratio determined how our results would affect the predicted Cl_x and NO_x partitioning in the stratosphere.

Chapter three explores the photodissociation dynamics of Cl_2O at 193, 248 and 308 nm. At 193 nm, we found evidence for the concerted reaction channel, Cl_2 + O. The ClO + Cl channel was also accessed, however, the majority of the ClO fragments were formed with sufficient internal energies for spontaneous secondary dissociation to occur. At 248 and 308 nm, we only observed only the ClO + Cl channel. . Some of the ClO formed at 248 nm was formed internally hot and spontaneously dissociated. Bimodal translational energy distributions of the ClO and Cl products indicate two pathways leading to the same product exist.

Appendix A, B and C discuss the details of data analysis techniques used in Chapters 1 and 2. The development of a molecular beam source of ClO dimer is presented in Appendix D.