962 resultados para Cell-Line MCF-7
Resumo:
This study aimed to identify novel biomarkers for thyroid carcinoma diagnosis and prognosis. We have constructed a human single-chain variable fragment (scFv) antibody library that was selected against tumour thyroid cells using the BRASIL method (biopanning and rapid analysis of selective interactive ligands) and phage display technology. One highly reactive clone, scFv-C1, with specific binding to papillary thyroid tumour proteins was confirmed by ELISA, which was further tested against a tissue microarray that comprised of 229 thyroid tissues, including: 110 carcinomas (38 papillary thyroid carcinomas (PTCs), 42 follicular carcinomas, 30 follicular variants of PTC), 18 normal thyroid tissues, 49 nodular goitres (NG) and 52 follicular adenomas. The scFv-C1 was able to distinguish carcinomas from benign lesions (P=0.0001) and reacted preferentially against T1 and T2 tumour stages (P=0.0108). We have further identified an OTU domain-containing protein 1, DUBA-7 deubiquitinating enzyme as the scFv-binding antigen using two-dimensional polyacrylamide gel electrophoresis and mass spectrometry. The strategy of screening and identifying a cell-surface-binding antibody against thyroid tissues was highly effective and resulted in a useful biomarker that recognises malignancy among thyroid nodules and may help identify lower-risk cases that can benefit from less-aggressive management.
Resumo:
This study proposes to investigate quercetin antitumor efficacy in vitro and in vivo, using the P39 cell line as a model. The experimental design comprised leukemic cells or xenografts of P39 cells, treated in vitro or in vivo, respectively, with quercetin; apoptosis, cell-cycle and autophagy activation were then evaluated. Quercetin caused pronounced apoptosis in P39 leukemia cells, followed by Bcl-2, Bcl-xL, Mcl-1 downregulation, Bax upregulation, and mitochondrial translocation, triggering cytochrome c release and caspases activation. Quercetin also induced the expression of FasL protein. Furthermore, our results demonstrated an antioxidant activity of quercetin. Quercetin treatment resulted in an increased cell arrest in G1 phase of the cell cycle, with pronounced decrease in CDK2, CDK6, cyclin D, cyclin E, and cyclin A proteins, decreased Rb phosphorylation and increased p21 and p27 expression. Quercetin induced autophagosome formation in the P39 cell line. Autophagy inhibition induced by quercetin with chloroquine triggered apoptosis but did not alter quercetin modulation in the G1 phase. P39 cell treatment with a combination of quercetin and selective inhibitors of ERK1/2 and/or JNK (PD184352 or SP600125, respectively), significantly decreased cells in G1 phase, this treatment, however, did not change the apoptotic cell number. Furthermore, in vivo administration of quercetin significantly reduced tumor volume in P39 xenografts and confirmed in vitro results regarding apoptosis, autophagy, and cell-cycle arrest. The antitumor activity of quercetin both in vitro and in vivo revealed in this study, point to quercetin as an attractive antitumor agent for hematologic malignancies.
Resumo:
In this study, a novel concise series of molecules based on the structure of goniothalamin (1) was synthesized and evaluated against a highly metastatic human pancreatic cancer cell line (Panc-1). Among them, derivative 8 displayed a low IC50 value (2.7 μM) and its concentration for decreasing colony formation was 20-fold lower than goniothalamin (1). Both compounds reduced the levels of the receptor tyrosine kinase (AXL) and cyclin D1 which are known to be overexpressed in pancreatic cancer cells. Importantly, despite the fact that goniothalamin (1) and derivative 8 caused pancreatic cancer cell cycle arrest and cell death, only derivative 8 was able to downregulate pro-survival and proliferation pathways mediated by mitogen activated protein kinase ERK1/2. Another interesting finding was that Panc-1 cells treated with derivative 8 displayed a strong decrease in the transcription factor (c-Myc), hypoxia-inducible factor-1α (HIF-1α) and vascular endothelial growth factor (VEGF) protein levels. Notably, the molecular effects caused by derivative 8 might not be related to ROS generation, since no significant production of ROS was observed in low concentrations of this compound (from 1.5 up to 3 μM). Therefore, the downregulation of important mediators of pancreatic cancer aggressiveness by derivative 8 reveals its great potential for the development of new chemotherapeutic agents for pancreatic cancer treatment.
Resumo:
Oral squamous cell carcinoma is the most common type of cancer in the oral cavity, representing more than 90% of all oral cancers. The characterization of altered molecules in oral cancer is essential to understand molecular mechanisms underlying tumor progression as well as to contribute to cancer biomarker and therapeutic target discovery. Proteoglycans are key molecular effectors of cell surface and pericellular microenvironments, performing multiple functions in cancer. Two of the major basement membrane proteoglycans, agrin and perlecan, were investigated in this study regarding their role in oral cancer. Using real time quantitative PCR (qRT-PCR), we showed that agrin and perlecan are highly expressed in oral squamous cell carcinoma. Interestingly, cell lines originated from distinct sites showed different expression of agrin and perlecan. Enzymatically targeting chondroitin sulfate modification by chondroitinase, oral squamous carcinoma cell line had a reduced ability to adhere to extracellular matrix proteins and increased sensibility to cisplatin. Additionally, knockdown of agrin and perlecan promoted a decrease on cell migration and adhesion, and on resistance of cells to cisplatin. Our study showed, for the first time, a negative regulation on oral cancer-associated events by either targeting chondroitin sulfate content or agrin and perlecan levels.
Resumo:
In the work, the in vitro antiproliferative activity of a series of synthetic fatty acid amides were investigated in seven cancer cell lines. The study revealed that most of the compounds showed antiproliferative activity against tested tumor cell lines, mainly on human glioma cells (U251) and human ovarian cancer cells with a multiple drug-resistant phenotype (NCI-ADR/RES). In addition, the fatty methyl benzylamide derived from ricinoleic acid (with the fatty acid obtained from castor oil, a renewable resource) showed a high selectivity with potent growth inhibition and cell death for the glioma cell line-the most aggressive CNS cancer.
Resumo:
Vimentin is a cytoeskeletal intermediate filament protein commonly observed in mesenchymal cells; however, it can also be found in malignant epithelial cells. It is demonstrated in several carcinomas, such as those of the cervix, breast and bladder, in which it is widely used as a marker of the epithelial to mesenchymal transition that takes place during embryogenesis and metastasis. Vimentin is associated with tumors that show a high degree of invasiveness, being detected in invasion front cells. Its expression seems to be influenced by the tumor microenvironment. The aim of this study was to evaluate vimentin expression in head and neck squamous cell carcinoma (HNSCC) cell lines, and to investigate the contribution of the microenvironment to its expression. HNSCC cell lines (HN6, HN30 and HN31) and an immortalized nontumorigenic cell line (HaCaT) were submitted to a three-dimensional assay with Matrigel. Cytoplasmatic staining of the HN6 cell line cultured without Matrigel and of the HN30 and HN31 cell lines cultured with Matrigel was demonstrated through immunohistochemistry. Western Blotting revealed a significant decrease in vimentin expression for the HN6 cell line and a significant increase for the HN30 and HN31 cell lines cultured with Matrigel. The results suggest that vimentin can be expressed in HNSCC cells and its presence is influenced by the microenvironment of a tumor.
Resumo:
Croton macrobothrys Baill, Euphorbiaceae, is a tree from the Atlantic Forest in Southern Brazil, used in traditional medicine and popularly known as "dragon's blood" and "pau-sangue". Leaf n-hexane, dichloromethane and methanol extracts were analyzed by GC/MS and evaluated for their in vitro antiproliferative activity on cell lines 786-0 (kidney), HT-29 (colon), K562 (leukemia), NCI-ADR/RES (drug resistant ovary), NCI-H460 (lung), MCF-7 (mammary), PC-3 (prostate), OVCAR-3 (ovary), U251 (glioma) and UACC-62 (melanoma). The dicloromethane extract exhibited activity against all cell lines at the concentration 25 µg/mL, in particular on cell lines NCI-H460 (GI50 0.33 μg/mL) and K5662 (GI50 0.91 μg/mL). Relevant constituents in dichloromethane extract are the alkaloids corydine and salutaridine, as well as the diterpenes geranylgeraniol and crotonin-derived clerodanes.
Resumo:
Polylactic-co-glycolic nanocapsules, loaded with nanosized magnetic particles and Selol (a selenium-based anticancer drug), were successfully prepared by the precipitation method. Maghemite (gamma-Fe(2)O(3)) nanoparticles were incorporated into the nanocapsules using a highly stable ionic magnetic fluid sample. The obtained nanocapsules presented no agglomeration, negative surface charge while revealing a narrow monomodal size distribution. All the nanocapsule formulations exhibited a good physical stability at 4 degrees C during 3 month storage period. The in vitro antitumoral activity of Selol-magnetic nanocapsules was assessed using a murine melanoma cell line. The influence of nanocapsules on cell viability was investigated by spectrophotometric assay. The results demonstrated that Selol-loaded magnetic nanocapsules (at 100 mu g/ml/5 x 10(9) particle/ml) showed antitumoral activity of 50% on melanoma cells (absence of magnetic field). These results clearly indicate that the loaded nanocapsules represent a novel and promising magnetic drug delivery system suitable for cancer treatment via the active drug and magnetohyperthermia. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3556950]
Resumo:
Background: Cell therapy approaches for biologic cardiac repair hold great promises, although basic fundamental issues remain poorly understood. In the present study we examined the effects of timing and routes of administration of bone marrow cells (BMC) post-myocardial infarction (MI) and the efficacy of an injectable biopolymer scaffold to improve cardiac cell retention and function. Methodology/Principal Findings: (99m)Tc-labeled BMC (6x10(6) cells) were injected by 4 different routes in adult rats: intravenous (IV), left ventricular cavity (LV), left ventricular cavity with temporal aorta occlusion (LV(+)) to mimic coronary injection, and intramyocardial (IM). The injections were performed 1, 2, 3, or 7 days post-MI and cell retention was estimated by gamma-emission counting of the organs excised 24 hs after cell injection. IM injection improved cell retention and attenuated cardiac dysfunction, whereas IV, LV or LV* routes were somewhat inefficient (< 1%). Cardiac BMC retention was not influenced by timing except for the IM injection that showed greater cell retention at 7 (16%) vs. 1, 2 or 3 (average of 7%) days post-MI. Cardiac cell retention was further improved by an injectable fibrin scaffold at day 3 post-MI (17 vs. 7%), even though morphometric and function parameters evaluated 4 weeks later displayed similar improvements. Conclusions/Significance: These results show that cells injected post-MI display comparable tissue distribution profile regardless of the route of injection and that there is no time effect for cardiac cell accumulation for injections performed 1 to 3 days post-MI. As expected the IM injection is the most efficient for cardiac cell retention, it can be further improved by co-injection with a fibrin scaffold and it significantly attenuates cardiac dysfunction evaluated 4 weeks post myocardial infarction. These pharmacokinetic data obtained under similar experimental conditions are essential for further development of these novel approaches.
Resumo:
Background: Melanoma progression occurs through three major stages: radial growth phase (RGP), confined to the epidermis; vertical growth phase (VGP), when the tumor has invaded into the dermis; and metastasis. In this work, we used suppression subtractive hybridization (SSH) to investigate the molecular signature of melanoma progression, by comparing a group of metastatic cell lines with an RGP-like cell line showing characteristics of early neoplastic lesions including expression of the metastasis suppressor KISS1, lack of alpha v beta 3-integrin and low levels of RHOC. Methods: Two subtracted cDNA collections were obtained, one (RGP library) by subtracting the RGP cell line (WM1552C) cDNA from a cDNA pool from four metastatic cell lines (WM9, WM852, 1205Lu and WM1617), and the other (Met library) by the reverse subtraction. Clones were sequenced and annotated, and expression validation was done by Northern blot and RT-PCR. Gene Ontology annotation and searches in large-scale melanoma expression studies were done for the genes identified. Results: We identified 367 clones from the RGP library and 386 from the Met library, of which 351 and 368, respectively, match human mRNA sequences, representing 288 and 217 annotated genes. We confirmed the differential expression of all genes selected for validation. In the Met library, we found an enrichment of genes in the growth factors/receptor, adhesion and motility categories whereas in the RGP library, enriched categories were nucleotide biosynthesis, DNA packing/repair, and macromolecular/vesicular trafficking. Interestingly, 19% of the genes from the RGP library map to chromosome 1 against 4% of the ones from Met library. Conclusion: This study identifies two populations of genes differentially expressed between melanoma cell lines from two tumor stages and suggests that these sets of genes represent profiles of less aggressive versus metastatic melanomas. A search for expression profiles of melanoma in available expression study databases allowed us to point to a great potential of involvement in tumor progression for several of the genes identified here. A few sequences obtained here may also contribute to extend annotated mRNAs or to the identification of novel transcripts.
Resumo:
Background: Cytoadherence of Plasmodium falciparum-infected red blood cells is mediated by var gene-encoded P. falciparum erythrocyte membrane protein-1 and host receptor preference depends in most cases on which of the 50-60 var genes per genome is expressed. Enrichment of phenotypically homogenous parasites by panning on receptor expressing cells is fundamental for the identification of the corresponding var transcript. Methods: P. falciparum 3D7 parasites were panned on several transfected CHO-cell lines and their var transcripts analysed by i) reverse transcription/PCR/cloning/sequencing using a universal DBL alpha specific oligonucleotide pair and ii) by reverse transcription followed by quantitative PCR using 57 different oligonucleotide pairs. Results: Each cytoadherence selected parasite line also adhered to untransfected CHO-745 cells and upregulation of the var gene PFD995/PFD1000c was consistently associated with cytoadherence to all but one CHO cell line. In addition, parasites panned on different CHO cell lines revealed candidate var genes which reproducibly associated to the respective cytoadherent phenotype. The transcription profile obtained by RT-PCR/cloning/sequencing differed significantly from that of RT-quantitative PCR. Conclusion: Transfected CHO cell lines are of limited use for the creation of monophenotypic cytoadherent parasite lines. Nevertheless, 3D7 parasites can be reproducibly selected for the transcription of different determined var genes without genetic manipulation. Most importantly, var transcription analysis by RT-PCR/cloning/sequencing may lead to erroneous interpretation of var transcription profiles.
Resumo:
Background: The metastatic disease rather than the primary tumor itself is responsible for death in most solid tumors, including breast cancer. The role of matrix metalloproteinases ( MMPs), tissue inhibitors of MMPs (TIMPs) and Reversion-inducing cysteine-rich protein with Kazal motifs ( RECK) in the metastatic process has previously been established. However, in all published studies only a limited number of MMPs/MMP inhibitors was analyzed in a limited number of cell lines. Here, we propose a more comprehensive approach by analyzing the expression levels of several MMPs (MMP-2, MMP-9 and MMP-14) and MMP inhibitors (TIMP-1, TIMP-2 and RECK) in different models ( five human breast cancer cell lines, 72 primary breast tumors and 30 adjacent normal tissues). Methods: We analyzed the expression levels of MMP-2, MMP-9 and MMP-14 and their inhibitors (TIMP-1, TIMP-2 and RECK) by quantitative RT-PCR (qRT-PCR) in five human breast cancer cell lines presenting increased invasiveness and metastatic potential, 72 primary breast tumors and 30 adjacent normal tissues. Moreover, the role of cell-extracellular matrix elements interactions in the regulation of expression and activity of MMPs and their inhibitors was analyzed by culturing these cell lines on plastic or on artificial ECM (Matrigel). Results: The results demonstrated that MMPs mRNA expression levels displayed a positive and statistically significant correlation with the transcriptional expression levels of their inhibitors both in the cell line models and in the tumor tissue samples. Furthermore, the expression of all MMP inhibitors was modulated by cell-Matrigel contact only in highly invasive and metastatic cell lines. The enzyme/inhibitor balance at the transcriptional level significantly favors the enzyme which is more evident in tumor than in adjacent non-tumor tissue samples. Conclusion: Our results suggest that the expression of MMPs and their inhibitors, at least at the transcriptional level, might be regulated by common factors and signaling pathways. Therefore, the multi-factorial analysis of these molecules could provide new and independent prognostic information contributing to the determination of more adequate therapy strategies for each patient.`
Resumo:
Fatty acid (FA) may disturb the redox state of the cells not only by an increase in reactive oxygen species (ROS) generation but also due to a reduction in antioxidant enzyme activities. The effect of various FAs (palmitic, stearic, oleic, linoleic, gamma-linolenic and eicosapentaenoic acids (EPAs)) on Jurkat and Raji cells, (human T and B leukaemic cell lines was investigated). The following measurements were carried out: FA composition of the cells, cell proliferation and activities of catalase, glutathione peroxidase (GPx) and superoxide dismutase (SOD). The protective effect of alpha-tocopherol on cell death was also investigated. Each cell line presented a specific FA composition. All the tested ENS reduced catalase activity. The toxic effect of FA was abolished by the pre-incubation with physiological concentrations of alpha-tocopherol. The findings support the proposition that the increase in oxidative stress induced by FA partially occurs due to a reduction in catalase activity. In spite of the decrease in the enzyme activity, catalase protein and mRNA levels were not changed, suggesting a post-translational regulation. Copyright (C) 2007 John Wiley & Sons, Ltd.
Resumo:
The antiproliferative activity of two prenylated benzophenones isolated from Rheedia brasiliensis. the tri-prenylated garciniaphenone and the tetraprenylated benzophenone 7-epiclusianone, was investigated against human cancer cell lines. The antiproliferative activity on melanoma (UACC-62), breast (MCF-7), drug-resistant breast (NCI-ADR), lung/non-small cells (NCI460), ovarian (OVCAR 03), prostate (PC03), kidney (786-0), lung (NCI-460) and tongue (CRL-1624 and CRL-1623) cancer cells was determined using spectrophotometric quantification of the cellular protein content. The effect of these benzophenones on the activity of cathepsins B and G was also investigated. Garciniaphenone displayed cytostatic activity in all cell lines, whereas 7-epiclusianone showed a dose-dependent cytotoxic effect. The IC(50) values for cell proliferation revealed that 7-epiclusianone is more active than garciniaphenone against most of the cell lines. Furthermore, the antiproliferative effects demonstrated by garciniaphenone and 7-epiclusianone were related to their cathepsin inhibiting properties. In conclusion, 7-epiclusianone is a promising naturally occurring agent which displays multiple inhibitory effects which may be working in concert to inhibit cancer cell proliferation in vitro. The putative pathway by which 7-epiclusianone affects cancer cell development may involve cathepsin inhibition. Copyright (C) 2009 John Wiley & Sons, Ltd.
Resumo:
Pothomorphe umbellata, a native Brazilian plant, is popularly known to be effective in the treatment of skin lesions. This benefit is attributed to 4-nerolidylcatechol (4-NC) a compound extracted from P. umbellata. Since melanomas show prominent resistance to apoptosis and exhibit extreme chemoresistance to multiple forms of therapy, novel compounds addressing induction of cell death are worth investigating. Here, we evaluated effects on cell cycle progression and possible cytotoxic activity of 4-NC in melanoma cell lines as well as human dermal fibroblasts. Inhibitory effects on cell invasion and MMP activity were also investigated. 4-NC showed cytotoxic activity for all melanoma cell lilies tested (IC(50) = 20-40 mu M, 24 h for tumoral cell lines: IC(50) = 50 mu M for fibroblast cell line) associated with its capacity to induce apoptosis. Furthermore, this is the first time that 4-NC is described as an inhibitor of cell invasiveness, due mainly to a G I cell cycle arrest and inhibition of MMP-2 activity in melanoma cell lines. (C) 2008 Elsevier Ltd. All rights reserved.