931 resultados para Bridged Bis-dioxines
Resumo:
The reactivity of electrogenerated bromine with cyclohexene has been studied on a platinum microelectrode by linear sweep and cyclic voltammetry in both the room temperature ionic liquid, 1-butyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide, and the conventional aprotic solvent, acetonitrile. Variation in the voltammetric response was observed in the two solvents, indicating that the bromination reaction proceeded via separate mechanisms. To identify the different products, electrolysis was conducted on the preparative scale and NMR spectroscopy confirmed that while bromination of the organic substrate in the ionic liquid yields trans-1,2-dibromocyclohexane, in acetonitrile, trans-1-(N-acetylamino)-2-bromocyclohexane is instead obtained as the major product. The reaction mechanism for bromination in acetonitrile has been modeled using digital simulation.
Resumo:
Enantiomerically pure N,N'-bis(-2,2'-dipyridyl-5-yl)carbonyl-(S/R,S/R)-1,2-diphenylethylenediamine has been synthesised by linking two 2,2'-bipyridine units by (R,R)- and (S,S)-1,2-diphenylethylenediamine. The ligands possess a hindered rotation between the bipyridine chromophores, which are held together by intramolecular hydrogen bonds. ES mass spectroscopy confirmed that reaction with Fe(II), Co(III) and Cd(II) afforded dinuclear complexes. CD spectroscopy implied that enantiopure ligands conferred helicity to the metals centre giving a dominant triple helicate diastereoisomer (with the RR isomer giving a P helicate). H-1 NMR spectroscopy of the cadmium complex confirmed the presence of a single diastereoisomer. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
The enantiomerically pure ligand L-3RR (2R, 3R)-bis(2,2'-dipyridyl-5-methoxyl) butane has been synthesised by linking two 2,2'-bipyridine units with (2R, 3R)-butandiol. The reaction of L-3RR with Zn(II) afforded a mononuclear species and the H-1 NMR spectroscopy points to a C-1 symmetry, expected for a distorted trigonal bipyramidal coordination environment. These observations were confirmed by MM2 calculations and electrospray mass spectrometry. The reaction of L-3RR with iron(II) indicated the formation of a dinuclear species by mass spectrometry. Solution state CD spectroscopy indicates that both complexes adopt a Lambda-configuration, implying a single stranded dinuclear iron(II) complex is present rather than the anticipated triple helical architecture.
Resumo:
Ionic liquids have been used to support a range of magnesium-and copper-based bis(oxazoline) complexes for the enantioselective Diels-Alder reaction between N-acryloyloxazolidinone and cyclopentadiene. Compared with reaction performed in dichloromethane or diethyl ether, an enhancement in ee is observed with a large increase in reaction rate. In addition, for non-sterically hindered bis(oxazoline) ligands, that is, phenyl functionalised ligands, a reversal in configuration is found in the ionic liquid, 1-ethyl-3-methylimidazolium bis[(trifluoromethanesulfonyl)imide], compared with molecular solvents. Supported ionic liquid phase catalysts have also been developed using surface-modified silica which show good reactivity and enantioselectivity for the case of the magnesium-based bis(oxazoline) complexes. Poor ees and conversion were observed for the analogous copper-based systems. Some drop in ee was found on supporting the catalyst due a drop in the rate of reaction and, therefore, an increase in the contribution from the uncatalysed a chiral reaction.
Resumo:
The effect of the addition of acetonitrile on the solubility of carbon dioxide in an ionic liquid, the 1-ethyl-3- methylimidazolium bis(trifluoromethanesulfonyl)amide, [C(2)mim][NTf2], was studied experimentally at pressures close to atmospheric and as a function of temperature between 290 and 335 K. It was observed that the solubility of carbon dioxide decreases linearly with the mole fraction of acetonitrile from a value of 2.6 x 10(-2) in the pure ionic liquid at 303 K to a mole fraction of 1.3 x 10(-2) in the mixture [C(2)mim][NTf2] + CH3CN with x(CH3CN) = 0.77 at the same temperature. The gas solubility decreases with temperature, and the thermodynamic properties of solvation could be calculated. The vapor pressures of the [ C2mim][ NTf2] + CH3CN mixtures were measured in the same temperature range, and strong negative deviations from Raoult's law were obtained: up to 36% for a mixture with x(CH3CN) = 0.46 at 334 K. Negative excess molar volumes of approximately -1 cm(3) mol(-1) at equimolar composition could also be calculated from density measurements of the pure components and of the mixtures. These observations are confirmed by neutron diffraction studies and are compatible with the existence of strong ion-dipole interactions in the mixed liquid solvent.
Resumo:
Single crystals of mercuric bis(N-imino-methyl-formamidate), Hg(Imf)(2), were obtained from aqueous solutions of 1,2,4-triazole and Hg(NO3)(2)center dot 2H(2)O. The crystal structure [monoclinic, P2(1)/c (no. 14), a = 499.6(2), b = 1051.2(4), c = 711.1(3) pm, beta = 117.55(1)degrees, Z = 2, R, for 890 reflections with I-0 > 2 sigma(I-0): 0.0369] contains linear centrosymmetric Hg(Imf)(2) molecules with Hg-N distances of only 203.5(7)pm. Two plus two intra- and intermolecular nitrogen atoms add to an effective coordination number of 6.
Resumo:
Nanoparticles of ZnO with the wurtzite structure have been successfully synthesized via a microwave through the decomposition of zinc acetate dihydrate in an ionic liquid, 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, as a solvent. Fundamental characterizations including X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM) were conducted for the ZnO nanostructures.
Resumo:
Concise syntheses of the substituted enynediones 28a, 33b and 36 starting from the cyclohexenealdehyde 18, corresponding to ring A in the taxanes, and the vinylstannane 24, are described. Treatment of 36 with Bu3SnH–AIBN did not lead to the oxy-substituted taxadiene 37 expected from a tandem radical macrocyclisation–radical transannulation sequence; instead, a mixture of unidentified products resulted. When the PMB ether 33b corresponding to the alcohol 36 was treated with Bu3SnH–AIBN under similar conditions, p-anisaldehyde was isolated, as a major by-product, but no evidence for the formation of a taxadiene could be observed. In contrast, the iododienynedione 41, i.e., deoxy 36, underwent a tandem radical macrocyclisation–transannulation sequence, when treated with Bu3SnH–AIBN, leading to the tetraoxy-bis-nortaxadiene 42 in 44% yield. Attempts to synthesise the alcohol 28b from the silyl ether 28a en route to the iodide 28c instead gave the substituted tetrahydrofuran 29 via an intramolecular oxy-Michael reaction.
Resumo:
We present results from complementary characterizations of the primary relaxation rate of a room temperature ionic liquid (RTIL), 1-hexyl-3-methylimidazolium bis{(trifluoromethyl)sulfonyl} imide, [C(6)mim][Tf2N], over a wide temperature range. This extensive data set is successfully merged with existing literature data for conductivity, viscosity, and NMR diffusion coefficients thus providing, for the case of RTILs, a unique description of the primary process relaxation map over more than 12 decades in relaxation rate and between 185 and 430 K. This unique data set allows a detailed characterization of the VTF parameters for the primary process, that are: B = 890 K, T-0 = 155.2 K, leading to a fragility index m = 71, corresponding to an intermediate fragility. For the first time neutron spin echo data from a fully deuteriated sample of RTIL at the two main interference peaks, Q = 0.76 and 1.4 angstrom(-1) are presented. At high temperature (T > 250 K), the collective structural relaxation rate follows the viscosity behavior; however at lower temperatures it deviates from the viscosity behavior, indicating the existence of a faster process.
Resumo:
The solubility of manganese in mercury was determined electrochemically via amalgamation and stripping in the room temperature ionic liquid n-hexyltriethylammonium bis(trifluoromethanesulfonyl)imide, [N-6,N-2,N-2,N-2][NTf2]. A hemispherical mercury electrode was made by electrodepositing mercury onto a planar platinum microelectrode. Cyclic voltammetry of Mn2+ in [N-6,N-2,N-2,N-2][NTf2] at the mercury microhemisphere electrode was investigated at temperatures of 298, 303 and 313 K. The solubility of Mn in Hg was determined on the basis of the charge under the reduction peak (Mn2+ --> Mn-0) and the corresponding reoxidation.
Resumo:
The ionic liquid (2-hydroxyethylammonium)trimethylammonium) bis(trifluoromethylsulfonyl)imide (choline bistriflimide) was obtained as a supercooled liquid at room temperature (melting point = 30 degrees C). Crystals of choline bistriflimide suitable for structure determination were grown from the melt in situ on the X-ray diffractometer. The choline cation adopts a folded conformation, whereas the bistriflimide anion exhibits a transoid conformation. The choline cation and the bistriflimide anion are held together by hydrogen bonds between the hydroxyl proton and a sulfonyl oxygen atom. This hydrogen bonding is of importance for the temperature-dependent solubility proper-ties of the ionic liquid. Choline bistriflimide is not miscible with water at room temperature, but forms one phase with water at temperatures above 72 degrees C (equals upper critical solution temperature). H-1 NMR studies show that the hydrogen bonds between the choline cation and the bistriflimide anion are substantially weakened above this temperature. The thermophysical properties of water-choline bistriflimide binary mixtures were furthermore studied by a photopyroelectric technique and by adiabatic scanning calorimetry (ASC). By photothermal analysis, besides highly accurate values for the thermal conductivity and effusivity of choline bistriflimide at 30 degrees C, the detailed temperature dependence of both the thermal conductivity and effusivity of the upper and lower part of a critical water-choline bistriflimide mixture in the neighborhood of the mixing-demixing phase transition could be determined with high resolution and accuracy. Together with high resolution ASC data for the heat capacity, experimental values were obtained for the critical exponents alpha and beta, and for the critical amplitude ratio G(+)/G(-). These three values were found to be consistent with theoretical expectations for a three dimensional Ising-type of critical behavior of binary liquid mixtures.
Resumo:
The structure of tris-chloro[2,6-bis(2'-pyridyl)-4-(2'-pyridinium)-1,3,5-triazine]cobalt(II) monohydrate, [Co(C18H13N6)Cl-3]center dot H2O (C2/c (No. 15), a = 7.783(11), b = 22.42(3), c = 11.001(15) angstrom, beta = 90.05(2)degrees), crystallized from the open air reaction of CoCl2 and 2,4,6-tri(2-pyridyl)-1,3,5-triazine in the ionic liquid, N-butyl-N-methyl-pyrrolidinium bis(trifluoromethanesulfonyl)imide is reported. The structure consists of six coordinate cobalt in an octahedral geometry bonded to the tridentate tptz ligand and three chlorines. The non-coordinating pyridyl group in the tptz ligand is protonated (with the protonated nitrogen crystallographically disordered over two possible sites), providing overall charge neutrality for the complex.
Resumo:
Crystal structures of two examples of an important class of ionic liquids, 1,3-dimethylimidazolium and 1,2,3-triethylimidazolium bis(trifluoromethanesulfonyl)imide have been characterized by single crystal X-ray diffraction. The anion in the 1,3-dimethylimidazolium example (mp 22 degreesC), adopts an unusual cis-geometry constrained by bifurcated cation-anion C-H...O hydrogen-bonds from the imidazolium cation to the anion resulting in the formation of fluorous layers within the solid-state structure. In contrast, in the 1,2,3-triethylimidazolium salt (mp 57 degreesC), the ions are discretely packed with only weak C-H...O contacts between the ions close to the van der Waals separation distances, and with the anion adopting the twisted conformation observed for all other examples from the limited set of organic bis( trifluoromethanesulfonyl) imide crystal structures. The structures are discussed in terms of the favorable physical properties that bis(trifluoromethanesulfonyl) imide anions impart in ionic liquids.
Resumo:
Solvent extraction of cesium ions from aqueous solution to hydrophobic ionic liquids without the introduction of an organophilic anion in the aqueous phase was demonstrated using calix[4]arene-bis(tert-octylbenzo-crown-6) (BOBCalixC6) as an extractant. The selectivity of this extraction process toward cesium ions and the use of a sacrificial cation exchanger (NaBPh4) to control loss of imidazolium cation to the aqueous solutions by ion exchange have been investigated.