995 resultados para Boron trifluoride


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The boron isotope systematics has been determined for azooxanthellate scleractinian corals from a wide range of both deep-sea and shallow-water environments. The aragonitic coral species, Caryophyllia smithii, Desmophyllum dianthus, Enallopsammia rostrata, Lophelia pertusa, and Madrepora oculata, are all found to have relatively high d11B compositions ranging from 23.2 per mil to 28.7 per mil. These values lie substantially above the pH-dependent inorganic seawater borate equilibrium curve, indicative of strong up-regulation of pH of the internal calcifying fluid (pH(cf)), being elevated by ~0.6-0.8 units (Delta pH) relative to ambient seawater. In contrast, the deep-sea calcitic coral Corallium sp. has a significantly lower d11B composition of 15.5 per mil, with a corresponding lower Delta pH value of ~0.3 units, reflecting the importance of mineralogical control on biological pH up-regulation. The solitary coral D. dianthus was sampled over a wide range of seawater pH(T) and shows an approximate linear correlation with Delta pH(Desmo) = 6.43 - 0.71 pH(T) (r**2 = 0.79). An improved correlation is however found with the closely related parameter of seawater aragonite saturation state, where Delta pH(Desmo) = 1.09 - 0.14 Omega(arag) (r**2 = 0.95), indicating the important control that carbonate saturation state has on calcification. The ability to up-regulate internal pH(cf), and consequently Omega(cf), of the calcifying fluid is therefore a process present in both azooxanthellate and zooxanthellate aragonitic corals, and is attributed to the action of Ca2+ -ATPase in modulating the proton gradient between seawater and the site of calcification. These findings also show that the boron isotopic compositions (d11Bcarb) of aragonitic corals are highly systematic and consistent with direct uptake of the borate species within the biologically controlled extracellular calcifying medium.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two-dimensional (2D) hexagonal boron nitride (BN) nanosheets are excellent dielectric substrate for graphene, molybdenum disulfide, and many other 2D nanomaterial-based electronic and photonic devices. To optimize the performance of these 2D devices, it is essential to understand the dielectric screening properties of BN nanosheets as a function of the thickness. Here, electric force microscopy along with theoretical calculations based on both state-of-the-art first-principles calculations with van der Waals interactions under consideration, and nonlinear Thomas-Fermi theory models are used to investigate the dielectric screening in high-quality BN nanosheets of different thicknesses. It is found that atomically thin BN nanosheets are less effective in electric field screening, but the screening capability of BN shows a relatively weak dependence on the layer thickness.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have fabricated a new van-der-Waals heterostructure composed by BN/graphene/C60. We performed transport measurements on the preliminary BN/graphene device finding a sharp Dirac point at the neutrality point. After the deposition of a C60 thin film by thermal evaporation, we have observed a significant n-doping of the heterostructure. This suggests an unusual electron transfer from C60 into the BN/graphene structure. This BN/graphene/C60 heterostructure can be of interest in photovoltaic applications. It can be used to build devices like p-n junctions, where C60 can be easily deposited in defined regions of a graphene junction by the use of a shadow mask. Our results are contrasted with theoretical calculations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Boron and Li are light, incompatible elements that preferentially partition into the liquid phase, whether melt or aqueous fluid, and thus are useful for tracking fluid-related processes in rocks. Most of the Li isotopic data presently available on subduction-related rocks are from whole-rock analyses; and the B isotopic analyses of subduction material have been carried out either on whole-rocks or in-situ on an accessory phase, such as tourmaline. The new method presented here couples an ESI New Wave UP-193-FX ArF* (193 nm) excimer laser-ablation microscope with a Neptune Plus (Thermo Scientific) MC-ICP-MS aiming to measure both Li and B isotopes in situ with good spatial resolution (metamorphic minerals are commonly chemically zoned, and whole-rock analyses lose this detail). The data thus obtained are compared with SIMS analyses on the same mineral samples for B, and with MC-ICP-MS analyses on whole-rock or mineral separates from the same sample for Li. Additionally, data acquired on tourmaline standards were compared to SIMS values. The results show that for B concentrations above 5 μg/g, the data obtained by LA-MC-ICP-MS and by SIMS are identical within error, for mica (phengitic muscovite), pyroxene (jadeite), serpentine (antigorite), and tourmaline. For Li concentrations above 10 μg/g, the data obtained by LA-MC-ICP-MS and by MC-ICP-MS are also identical, within error, for mica (phengitic muscovite), and pyroxene (jadeite). However, analyses of tourmaline standards have shown significant differences with reference values, so LA-MC-ICP-MS does not yet appear to be an appropriate method to analyze Li isotopes in tourmalines. Thus, LA-MC-ICP-MS is a suitable method to measure Li and B isotopes with good spatial resolution in major rock-forming silicates from subduction-related rocks where concentrations exceed 10 μg/g and 5 μg/g, respectively, with an error on individual measurements equal to or less than previously used methods, but obtainable in a significantly shorter amount of time. The external reproducibility is ± 2.88 to 3.31 ‰ for B and ± 1.50 to 1.75 for Li, which is lower than or equal to the variations encountered within a given chemically zoned sample (up to 10 ‰ of variation within a given natural sample).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Analysis of the induced stress on undoped and boron-doped diamond (BDD) thin films by confocal Raman microscopy is performed in this study to investigate its correlation with sample chemical composition and the substrate used during fabrication. Knowledge of this nature is very important to the issue of long-term stability of BDD coated neurosurgical electrodes that will be used in fast-scan cyclic voltammetry, as potential occurrence of film delaminations and dislocations during their surgical implantation can have unwanted consequences for the reliability of BDD-based biosensing electrodes. To achieve a more uniform deposition of the films on cylindrically-shaped tungsten rods, substrate rotation was employed in a custom-built chemical vapor deposition reactor. In addition to visibly preferential boron incorporation into the diamond lattice and columnar growth, the results also reveal a direct correlation between regions of pure diamond and enhanced stress. Definite stress release throughout entire film thicknesses was found in the OPEN ACCESS current Raman mapping images for higher amounts of boron addition. There is also a possible contribution to the high values of compressive stress from sp2 type carbon impurities, besides that of the expected lattice mismatch between film and substrate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Atomically thin boron nitride (BN) is an important 2D nanomaterial, with many properties distinct from graphene. In this feature article, these unique properties and associated applications, often not feasible with graphene, are outlined. The article starts with characterization and identification of atomically thin BN. It is followed by demonstrating their strong oxidation resistance at high temperatures and applications in protecting metals from oxidation and corrosion. As flat insulators, BN nanosheets are ideal dielectric substrates for surface enhanced Raman spectroscopy (SERS) and electronic devices based on 2D heterostructures. The light emission of BN nanosheets in the deep ultraviolet (DUV) and ultraviolet (UV) regions is also included for its scientific and technological importance. The last part is dedicated to synthesis, characterization, and optical properties of BN nanoribbons, a special form of nanosheets.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper investigates the manufacturing of aluminium-boron carbide composites using the stir casting method. Mechanical and physical properties tests to obtain hardness, ultimate tensile strength (UTS) and density are performed after solidification of specimens. The results show that hardness and tensile strength of aluminium based composite are higher than monolithic metal. Increasing the volume fraction of B4C, enhances the tensile strength and hardness of the composite; however over-loading of B4C caused particle agglomeration, rejection from molten metal and migration to slag. This phenomenon decreases the tensile strength and hardness of the aluminium based composite samples cast at 800 °C. For Al-15 vol% B4C samples, the ultimate tensile strength and Vickers hardness of the samples that were cast at 1000 °C, are the highest among all composites. To predict the mechanical properties of aluminium matrix composites, two key prediction modelling methods including Neural Network learned by Levenberg-Marquardt Algorithm (NN-LMA) and Thin Plate Spline (TPS) models are constructed based on experimental data. Although the results revealed that both mathematical models of mechanical properties of Al-B4C are reliable with a high level of accuracy, the TPS models predict the hardness and tensile strength values with less error compared to NN-LMA models.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Atomically thin boron nitride (BN) nanosheets have many properties desirable for surface-enhanced Raman spectroscopy (SERS). BN nanosheets have a strong surface adsorption capability toward airborne hydrocarbon and aromatic molecules. For maximized adsorption area and hence SERS sensitivity, atomically thin BN nanosheet-covered gold nanoparticles have been prepared for the first time. When placed on top of metal nanoparticles, atomically thin BN nanosheets closely follow their contours so that the plasmonic hot spots are retained. Electrically insulating BN nanosheets also act as a barrier layer to eliminate metal-induced disturbances in SERS. Moreover, the SERS substrates veiled by BN nanosheets show an outstanding reusability in the long term. As a result, the sensitivity, reproducibility, and reusability of SERS substrates can be greatly improved. We also demonstrate that large BN nanosheets produced by chemical vapor deposition can be used to scale up the proposed SERS substrate for practical applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

 Boron nitride nanotube reinforcement at titanium matrix composite increased the strength of the composite both at room and high temperature. At higher sintering temperature, nanotube reacts with titanium first forming TiB2 transition phase at the interface and then in-situ formed TiB phases in the matrix, which is also responsible for enhanced mechanical properties.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The difference in the chemical and physical properties of boron nitride nanotube (BNNT) films and carbon nanotube (CNT) films can benefit tissue scaffolding and engineering. However, the production of dense films of pure BNNTs is more challenging than that of CNT films. In addition, BNNT films are usually extremely nonwettable to water, so surface modification is required before they can be used in bioapplications. In this chapter, the synthesis routes of high-density BNNT films are introduced, followed by their wettability properties and surface modification by plasma treatments. The cell proliferation on both pristine and wettability-modified BNNT films is discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Surface interaction is extremely important to both fundamental research and practical application. Physisorption can induce shape and structural distortion (i.e., conformational changes) in macromolecular and biomolecular adsorbates, but such phenomena have rarely been observed on adsorbents. Here, it is demonstrated theoretically and experimentally that atomically thin boron nitride (BN) nanosheets as an adsorbent experience conformational changes upon surface adsorption of molecules, increasing adsorption energy and efficiency. The study not only provides new perspectives on the strong adsorption capability of BN nanosheets and many other two-dimensional (2D) nanomaterials but also opens up possibilities for many novel applications. For example, it is demonstrated that BN nanosheets with the same surface area as bulk hexagonal BN particles are more effective in purification and sensing.