963 resultados para Binding sites


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The calcitonin receptor-like receptor (CRLR) and receptor activity modifying protein-3 (RAMP3) can assemble into a CRLR/RAMP3 heterodimeric receptor that exhibits the characteristics of a high affinity adrenomedullin receptor. RAMP3 participates in adrenomedullin (AM) binding via its extracellular N-terminus characterized by the presence of six highly conserved cysteine residues and four N-glycosylation consensus sites. Here, we assessed the usage of these conserved residues in cotranslational modifications of RAMP3 and addressed their role in functional expression of the CRLR/RAMP3 receptor. Using a Xenopus oocyte expression system, we show that (i) RAMP3 is assembled with CRLR as a multiple N-glycosylated species in which two, three, or four consensus sites are used; (ii) elimination of all N-glycans in RAMP3 results in a significant inhibition of receptor [(125)I]AM binding and an increase in the EC(50) value for AM; (iii) several lines of indirect evidence indicate that each of the six cysteines is involved in disulfide bond formation; (iv) when all cysteines are mutated to serines, RAMP3 is N-glycosylated at all four consensus sites, suggesting that disulfide bond formation inhibits N-gylcosylation; and (v) elimination of all cysteines abolishes adrenomedullin binding and leads to a complete loss of receptor function. Our data demonstrate that cotranslational modifications of RAMP3 play a critical role in the function of the CRLR/RAMP3 adrenomedullin receptor.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Families of clonally expressed major histocompatibility complex (MHC) class I-specific receptors provide specificity to and regulate the function of natural killer (NK) cells. One of these receptors, mouse Ly49A, is expressed by 20% of NK cells and inhibits the killing of H-2D(d) but not D(b)-expressing target cells. Here, we show that the trans-acting factor TCF-1 binds to two sites in the Ly49A promoter and regulates its activity. Moreover, we find that TCF-1 determines the size of the Ly49A NK cell subset in vivo in a dosage-dependent manner. We propose that clonal Ly49A acquisition during NK cell development is regulated by TCF-1.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The study of transcriptional regulation often needs the integration of diverse yet independent data. In the present work, sequence conservation, predic-tion of transcription factor binding sites (TFBS) and gene expression analysis have been applied to the detection of putative transcription factor (TF) modules in the regulatory region of the FGFR3 oncogene. Several TFs with conserved binding sites in the FGFR3 regulatory region have shown high positive or negative corre-lation with FGFR3 expression both in urothelial carcinoma and in benign nevi. By means of conserved TF cluster analysis, two different TF modules have been iden-tified in the promoter and first intron of FGFR3 gene. These modules contain acti-vating AP2, E2F, E47 and SP1 binding sites plus motifs for EGR with possible repressor function.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Aldosterone exerts its effects through interactions with two types of binding sites, the mineralocorticoid (MR) and the glucocorticoid (GR) receptors. Although both receptors are known to be involved in the anti-natriuretic response to aldosterone, the mechanisms of signal transduction leading to modulation of electrolyte transport are not yet fully understood. This study measured the Na(+) and K(+) urinary excretion and the mRNA levels of three known aldosterone-induced transcripts, the serum and glucocorticoid-induced kinase (Sgk-1), the alpha subunit of the epithelial Na(+) channel (alphaENaC), and the glucocorticoid-induced-leucine-zipper protein (GILZ) in the whole kidney and in isolated cortical collecting tubules of adrenalectomized rats treated with low doses of aldosterone and/or dexamethasone. The resulting plasma concentrations of both steroids were close to 1 nmol/L. Aldosterone, given with or without dexamethasone, induced anti-natriuresis and kaliuresis, whereas dexamethasone alone did not. GILZ and alphaENaC transcripts were higher after treatment with either or both hormones, whereas the mRNA abundance of Sgk-1 was increased in the cortical collecting tubule by aldosterone but not by dexamethasone. We conclude the increased expression of Sgk-1 in the cortical collecting tubules is a primary event in the early antinatriuretic and kaliuretic responses to physiologic concentrations of aldosterone. Induction of alphaENaC and/or GILZ mRNAs may play a permissive role in the enhancement of the early and/or late responses; these effects may be necessary for a full response but do not by themselves promote early changes in urinary Na(+) and K(+) excretion.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The ability of pollutants to affect human health is a major concern, justified by the wide demonstration that reproductive functions are altered by endocrine disrupting chemicals. The definition of endocrine disruption is today extended to broader endocrine regulations, and includes activation of metabolic sensors, such as the peroxisome proliferator-activated receptors (PPARs). Toxicology approaches have demonstrated that phthalate plasticizers can directly influence PPAR activity. What is now missing is a detailed molecular understanding of the fundamental basis of endocrine disrupting chemical interference with PPAR signaling. We thus performed structural and functional analyses that demonstrate how monoethyl-hexyl-phthalate (MEHP) directly activates PPARgamma and promotes adipogenesis, albeit to a lower extent than the full agonist rosiglitazone. Importantly, we demonstrate that MEHP induces a selective activation of different PPARgamma target genes. Chromatin immunoprecipitation and fluorescence microscopy in living cells reveal that this selective activity correlates with the recruitment of a specific subset of PPARgamma coregulators that includes Med1 and PGC-1alpha, but not p300 and SRC-1. These results highlight some key mechanisms in metabolic disruption but are also instrumental in the context of selective PPAR modulation, a promising field for new therapeutic development based on PPAR modulation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The three peroxisome proliferator-activated receptors (PPARs) are ligand-activated transcription factors of the nuclear hormone receptor superfamily. They share a high degree of structural homology with all members of the superfamily, particularly in the DNA-binding domain and ligand- and cofactor-binding domain. Many cellular and systemic roles have been attributed to these receptors, reaching far beyond the stimulation of peroxisome proliferation in rodents after which they were initially named. PPARs exhibit broad, isotype-specific tissue expression patterns. PPARalpha is expressed at high levels in organs with significant catabolism of fatty acids. PPARbeta/delta has the broadest expression pattern, and the levels of expression in certain tissues depend on the extent of cell proliferation and differentiation. PPARgamma is expressed as two isoforms, of which PPARgamma2 is found at high levels in the adipose tissues, whereas PPARgamma1 has a broader expression pattern. Transcriptional regulation by PPARs requires heterodimerization with the retinoid X receptor (RXR). When activated by a ligand, the dimer modulates transcription via binding to a specific DNA sequence element called a peroxisome proliferator response element (PPRE) in the promoter region of target genes. A wide variety of natural or synthetic compounds was identified as PPAR ligands. Among the synthetic ligands, the lipid-lowering drugs, fibrates, and the insulin sensitizers, thiazolidinediones, are PPARalpha and PPARgamma agonists, respectively, which underscores the important role of PPARs as therapeutic targets. Transcriptional control by PPAR/RXR heterodimers also requires interaction with coregulator complexes. Thus, selective action of PPARs in vivo results from the interplay at a given time point between expression levels of each of the three PPAR and RXR isotypes, affinity for a specific promoter PPRE, and ligand and cofactor availabilities.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Macrophage migration inhibitory factor (MIF) is an upstream activator of the immune response that counter-regulates the immunosuppressive effects of glucocorticoids. While MIF is released by cells in response to diverse microbial and invasive stimuli, evidence that glucocorticoids in low concentrations also induce MIF secretion suggests an additional regulatory relationship between these mediators. We investigated the expression of MIF from the human CEM T cell line, which exists in two well-characterized, glucocorticoid-sensitive (CEM-C7) and glucocorticoid-resistant (CEM-C1) variant clones. Dexamethasone in low concentrations induced MIF secretion from CEM-C7 but not CEM-C1 T cells by a bell-shaped dose response that was similar to that reported previously for the release of MIF by monocytes/macrophages. Glucocorticoid stimulation of CEM-C7 T cells was accompanied by an MIF transcriptional response, which by promoter analysis was found to involve the GRE and ATF/CRE transcription factor binding sites. These data support a glucocorticoid-mediated MIF secretion response by T cells that may contribute to the regulation of the adaptive immune response.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

An Adobe (R) animation is presented for use in undergraduate Biochemistry courses, illustrating the mechanism of Na+ and K+ translocation coupled to ATP hydrolysis by the (Na, K)-ATPase, a P-2c-type ATPase, or ATP-powered ion pump that actively translocates cations across plasma membranes. The enzyme is also known as an E-1/E-2-ATPase as it undergoes conformational changes between the E-1 and E-2 forms during the pumping cycle, altering the affinity and accessibility of the transmembrane ion-binding sites. The animation is based on Horisberger's scheme that incorporates the most recent significant findings to have improved our understanding of the (Na, K)-ATPase structure function relationship. The movements of the various domains within the (Na, K)-ATPase alpha-subunit illustrate the conformational changes that occur during Na+ and K+ translocation across the membrane and emphasize involvement of the actuator, nucleotide, and phosphorylation domains, that is, the "core engine" of the pump, with respect to ATP binding, cation transport, and ADP and P-i release.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In the urinary bladder of the toad Bufo marinus aldosterone (between 0.8 and 100 nM) stimulates Na+ transport [half-maximal induction concentration (K1/2) = 6.5 nM]. At low hormone concentrations (0.8-8 nM), the increase of Na+ transport between 0.75 and 2.5 h is accompanied by a fall in transepithelial resistance (R). Higher hormone concentrations (30-800 nM) induce an additional resistance-independent fraction of Na+ transport within 2.5-8 h. From 6 h on, aldosterone (between 0.2 and 20 nM) stimulates in the same tissue the biosynthesis rate of the alpha- and beta-subunits of Na+-K+-ATPase (K1/2 = 3 and 1.5 nM, respectively). New pump synthesis is thus not a prerequisite for the early mineralocorticoid response but might be linked to the late transport event. The mineralocorticoid response is usually ascribed to interaction with the higher affinity type 1 receptor. In the present study we show, however, that at least 55% of the overall Na+ transport response is linked to nuclear occupation of the lower affinity type 2 receptors [dissociation constant (Kd) = 50 nM, maximum number of binding sites (Nmax) = 315 fmol/mg protein]. Distinct aldosterone effects, such as the fall in R and the increase in Na+-K+-ATPase synthesis, are more closely related to occupation of type 1 receptors (Kd = 0.3 nM, Nmax = 23 fmol/mg protein). At maximal induction of these latter parameters, only about 20% of type 2 receptors are occupied. These results suggest that both types of aldosterone receptors are involved in the mediation of the full mineralocorticoid response: type 1 in the early and late and type 2 particularly in the late tissue response.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Stathmin is a regulator of microtubule dynamics which undergoes extensive phosphorylation during the cell cycle as well as in response to various extracellular factors. Four serine residues are targets for protein kinases: Ser-25 and Ser-38 for proline-directed kinases such as mitogen-activated protein kinase and cyclin-dependent protein kinase, and Ser-16 and Ser-63 for cAMP-dependent protein kinase. We studied the effect of phosphorylation on the microtubule-destabilizing activity of stathmin and on its interaction with tubulin in vitro. We show that triple phosphorylation on Ser-16, Ser-25, and Ser-38 efficiently inhibits its activity and prevents its binding to tubulin.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Transforming growth factor beta (TGF-beta) and tumor necrosis factor alpha (TNF-alpha) often exhibit antagonistic actions on the regulation of various activities such as immune responses, cell growth, and gene expression. However, the molecular mechanisms involved in the mutually opposing effects of TGF-beta and TNF-alpha are unknown. Here, we report that binding sites for the transcription factor CTF/NF-I mediate antagonistic TGF-beta and TNF-alpha transcriptional regulation in NIH3T3 fibroblasts. TGF-beta induces the proline-rich transactivation domain of specific CTF/NF-I family members, such as CTF-1, whereas TNF-alpha represses both the uninduced as well as the TGF-beta-induced CTF-1 transcriptional activity. CTF-1 is thus the first transcription factor reported to be repressed by TNF-alpha. The previously identified TGF-beta-responsive domain in the proline-rich transcriptional activation sequence of CTF-1 mediates both transcriptional induction and repression by the two growth factors. Analysis of potential signal transduction intermediates does not support a role for known mediators of TNF-alpha action, such as arachidonic acid, in CTF-1 regulation. However, overexpression of oncogenic forms of the small GTPase Ras or of the Raf-1 kinase represses CTF-1 transcriptional activity, as does TNF-alpha. Furthermore, TNF-alpha is unable to repress CTF-1 activity in NIH3T3 cells overexpressing ras or raf, suggesting that TNF-alpha regulates CTF-1 by a Ras-Raf kinase-dependent pathway. Mutagenesis studies demonstrated that the CTF-1 TGF-beta-responsive domain is not the primary target of regulatory phosphorylations. Interestingly, however, the domain mediating TGF-beta and TNF-alpha antagonistic regulation overlapped precisely the previously identified histone H3 interaction domain of CTF-1. These results identify CTF-1 as a molecular target of mutually antagonistic TGF-beta and TNF-alpha regulation, and they further suggest a molecular mechanism for the opposing effects of these growth factors on gene expression.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We have determined high-resolution crystal structures of the complexes of HLA-A2 molecules with two modified immunodominant peptides from the melanoma tumor-associated protein Melan-A/Melanoma Ag recognized by T cells-1. The two peptides, a decamer and nonamer with overlapping sequences (ELAGIGILTV and ALGIGILTV), are modified in the second residue to increase their affinity for HLA-A2. The modified decamer is more immunogenic than the natural peptide and a candidate for peptide-based melanoma immunotherapy. The crystal structures at 1.8 and 2.15 A resolution define the differences in binding modes of the modified peptides, including different clusters of water molecules that appear to stabilize the peptide-HLA interaction. The structures suggest both how the wild-type peptides would bind and how three categories of cytotoxic T lymphocytes with differing fine specificity might recognize the two peptides.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The human T-cell leukemia virus type 1 (HTLV-1) Tax protein activates viral transcription through three 21-bp repeats located in the U3 region of the HTLV-1 long terminal repeat and called Tax-responsive elements (TxREs). Each TxRE contains nucleotide sequences corresponding to imperfect cyclic AMP response elements (CRE). In this study, we demonstrate that the bZIP transcriptional factor CREB-2 is able to bind in vitro to the TxREs and that CREB-2 binding to each of the 21-bp motifs is enhanced by Tax. We also demonstrate that Tax can weakly interact with CREB-2 bound to a cellular palindromic CRE motif such as that found in the somatostatin promoter. Mutagenesis of Tax and CREB-2 demonstrates that both N- and C-terminal domains of Tax and the C-terminal region of CREB-2 are required for direct interaction between the two proteins. In addition, the Tax mutant M47, defective for HTLV-1 activation, is unable to form in vitro a ternary complex with CREB-2 and TxRE. In agreement with recent results suggesting that Tax can recruit the coactivator CREB-binding protein (CBP) on the HTLV-1 promoter, we provide evidence that Tax, CREB-2, and CBP are capable of cooperating to stimulate viral transcription. Taken together, our data highlight the major role played by CREB-2 in Tax-mediated transactivation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Early ocular development is controlled by a complex network of transcription factors, cell cycle regulators, and diffusible signalling molecules. Together, these molecules regulate cell proliferation and apoptosis, and specify retinal fate. NKX5-3 is a homeobox transcription factor implicated in eye development. The analysis of the 5'-flanking region of the mouse Nkx5-3 gene revealed a predicted TATA-less promoter sequence between -416 and -166 of the translation start site. To functionally characterise Nkx5-3 promoter activity, serial deletions of the promoter sequence were introduced in pGL-3 basic vector and promoter activity of these 5'- and 3'-deleted constructions was tested in HeLa and CHO cells. Transactivation assays identified a region between -350 and -296 exhibiting promoter-like activity. Combined analysis by deletions and point mutations showed that this sequence, containing multiple Sp1 binding sites was necessary to promote transcriptional activity. Binding of Sp1 to this region was confirmed by electrophoretic mobility shift assay (EMSA) and chromatin immunoprecipitation, using an antibody specific for Sp1. Altogether, these results demonstrated that the immediate upstream region of Nkx5-3 gene possessed a strong intrinsic promoter activity in vitro, suggesting a potential role in Nkx5-3 transcription in vivo.