969 resultados para Bayesian Learning
Resumo:
The development of nations depends on energy consumption, which is generally based on fossil fuels. This dependency produces irreversible and dramatic effects on the environment, e.g. large greenhouse gas emissions, which in turn cause global warming and climate changes, responsible for the rise of the sea level, floods, and other extreme weather events. Transportation is one of the main uses of energy, and its excessive fossil fuel dependency is driving the search for alternative and sustainable sources of energy such as microalgae, from which biodiesel, among other useful compounds, can be obtained. The process includes harvesting and drying, two energy consuming steps, which are, therefore, expensive and unsustainable. The goal of this EPS@ISEP Spring 2013 project was to develop a solar microalgae dryer for the microalgae laboratory of ISEP. A multinational team of five students from distinct fields of study was responsible for designing and building the solar microalgae dryer prototype. The prototype includes a control system to ensure that the microalgae are not destroyed during the drying process. The solar microalgae dryer works as a distiller, extracting the excess water from the microalgae suspension. This paper details the design steps, the building technologies, the ethical and sustainable concerns and compares the prototype with existing solutions. The proposed sustainable microalgae drying process is competitive as far as energy usage is concerned. Finally, the project contributed to increase the deontological ethics, social compromise skills and sustainable development awareness of the students.
Resumo:
This paper presents a decision support methodology for electricity market players’ bilateral contract negotiations. The proposed model is based on the application of game theory, using artificial intelligence to enhance decision support method’s adaptive features. This model is integrated in AiD-EM (Adaptive Decision Support for Electricity Markets Negotiations), a multi-agent system that provides electricity market players with strategic behavior capabilities to improve their outcomes from energy contracts’ negotiations. Although a diversity of tools that enable the study and simulation of electricity markets has emerged during the past few years, these are mostly directed to the analysis of market models and power systems’ technical constraints, making them suitable tools to support decisions of market operators and regulators. However, the equally important support of market negotiating players’ decisions is being highly neglected. The proposed model contributes to overcome the existing gap concerning effective and realistic decision support for electricity market negotiating entities. The proposed method is validated by realistic electricity market simulations using real data from the Iberian market operator—MIBEL. Results show that the proposed adaptive decision support features enable electricity market players to improve their outcomes from bilateral contracts’ negotiations.
Resumo:
Massive Open Online Courses (MOOC) are gaining prominence in transversal teaching-learning strategies. However, there are many issues still debated, namely assessment, recognized largely as a cornerstone in Education. The large number of students involved requires a redefinition of strategies that often use approaches based on tasks or challenging projects. In these conditions and due to this approach, assessment is made through peer-reviewed assignments and quizzes online. The peer-reviewed assignments are often based upon sample answers or topics, which guide the student in the task of evaluating peers. This chapter analyzes the grading and evaluation in MOOCs, especially in science and engineering courses, within the context of education and grading methodologies and discusses possible perspectives to pursue grading quality in massive e-learning courses.
Resumo:
Dissertação apresentada para cumprimento dos requisitos necessários à obtenção do grau de Mestre em Gestão de Sistemas de e-Learning,
Resumo:
Trabalho de Projecto apresentado para cumprimento dos requisitos necessários à obtenção do grau de Mestre em Gestão de Sistemas de e-Learning
Resumo:
High-content analysis has revolutionized cancer drug discovery by identifying substances that alter the phenotype of a cell, which prevents tumor growth and metastasis. The high-resolution biofluorescence images from assays allow precise quantitative measures enabling the distinction of small molecules of a host cell from a tumor. In this work, we are particularly interested in the application of deep neural networks (DNNs), a cutting-edge machine learning method, to the classification of compounds in chemical mechanisms of action (MOAs). Compound classification has been performed using image-based profiling methods sometimes combined with feature reduction methods such as principal component analysis or factor analysis. In this article, we map the input features of each cell to a particular MOA class without using any treatment-level profiles or feature reduction methods. To the best of our knowledge, this is the first application of DNN in this domain, leveraging single-cell information. Furthermore, we use deep transfer learning (DTL) to alleviate the intensive and computational demanding effort of searching the huge parameter's space of a DNN. Results show that using this approach, we obtain a 30% speedup and a 2% accuracy improvement.
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia Electrotécnica e de Computadores
Resumo:
A personalização é um aspeto chave de uma interação homem-computador efetiva. Numa era em que existe uma abundância de informação e tantas pessoas a interagir com ela, de muitas maneiras, a capacidade de se ajustar aos seus utilizadores é crucial para qualquer sistema moderno. A criação de sistemas adaptáveis é um domínio bastante complexo que necessita de métodos muito específicos para ter sucesso. No entanto, nos dias de hoje ainda não existe um modelo ou arquitetura padrão para usar nos sistemas adaptativos modernos. A principal motivação desta tese é a proposta de uma arquitetura para modelação do utilizador que seja capaz de incorporar diferentes módulos necessários para criar um sistema com inteligência escalável com técnicas de modelação. Os módulos cooperam de forma a analisar os utilizadores e caracterizar o seu comportamento, usando essa informação para fornecer uma experiência de sistema customizada que irá aumentar não só a usabilidade do sistema mas também a produtividade e conhecimento do utilizador. A arquitetura proposta é constituída por três componentes: uma unidade de informação do utilizador, uma estrutura matemática capaz de classificar os utilizadores e a técnica a usar quando se adapta o conteúdo. A unidade de informação do utilizador é responsável por conhecer os vários tipos de indivíduos que podem usar o sistema, por capturar cada detalhe de interações relevantes entre si e os seus utilizadores e também contém a base de dados que guarda essa informação. A estrutura matemática é o classificador de utilizadores, e tem como tarefa a sua análise e classificação num de três perfis: iniciado, intermédio ou avançado. Tanto as redes de Bayes como as neuronais são utilizadas, e uma explicação de como as preparar e treinar para lidar com a informação do utilizador é apresentada. Com o perfil do utilizador definido torna-se necessária uma técnica para adaptar o conteúdo do sistema. Nesta proposta, uma abordagem de iniciativa mista é apresentada tendo como base a liberdade de tanto o utilizador como o sistema controlarem a comunicação entre si. A arquitetura proposta foi desenvolvida como parte integrante do projeto ADSyS - um sistema de escalonamento dinâmico - utilizado para resolver problemas de escalonamento sujeitos a eventos dinâmicos. Possui uma complexidade elevada mesmo para utilizadores frequentes, daí a necessidade de adaptar o seu conteúdo de forma a aumentar a sua usabilidade. Com o objetivo de avaliar as contribuições deste trabalho, um estudo computacional acerca do reconhecimento dos utilizadores foi desenvolvido, tendo por base duas sessões de avaliação de usabilidade com grupos de utilizadores distintos. Foi possível concluir acerca dos benefícios na utilização de técnicas de modelação do utilizador com a arquitetura proposta.
Resumo:
Dissertação para obtenção do Grau de Doutor em Ciências da Educação Especialidade em Tecnologias, Redes e Multimédia na Educação e Formação
Resumo:
Trabalho de projecto de Mestrado em Gestão de Sistemas de E-Learning
Resumo:
Dissertação para obtenção do Grau de Doutor em Ciências da Educação
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia Electrotécnica, Sistemas e Computadores
Resumo:
Dissertação apresentada para obtenção do Grau de Doutor em Ciências da Educação, pela Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa
Resumo:
Trabalho de Projecto apresentado para cumprimento dos requisitos necessários à obtenção do grau de Mestre em Gestão de Sistemas de E-Learning
Resumo:
A Work Project, presented as part of the requirements for the Award of a Masters Degree in Management from the NOVA – School of Business and Economics