500 resultados para Authenticated Encryption


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Many existing encrypted Internet protocols leak information through packet sizes and timing. Though seemingly innocuous, prior work has shown that such leakage can be used to recover part or all of the plaintext being encrypted. The prevalence of encrypted protocols as the underpinning of such critical services as e-commerce, remote login, and anonymity networks and the increasing feasibility of attacks on these services represent a considerable risk to communications security. Existing mechanisms for preventing traffic analysis focus on re-routing and padding. These prevention techniques have considerable resource and overhead requirements. Furthermore, padding is easily detectable and, in some cases, can introduce its own vulnerabilities. To address these shortcomings, we propose embedding real traffic in synthetically generated encrypted cover traffic. Novel to our approach is our use of realistic network protocol behavior models to generate cover traffic. The observable traffic we generate also has the benefit of being indistinguishable from other real encrypted traffic further thwarting an adversary's ability to target attacks. In this dissertation, we introduce the design of a proxy system called TrafficMimic that implements realistic cover traffic tunneling and can be used alone or integrated with the Tor anonymity system. We describe the cover traffic generation process including the subtleties of implementing a secure traffic generator. We show that TrafficMimic cover traffic can fool a complex protocol classification attack with 91% of the accuracy of real traffic. TrafficMimic cover traffic is also not detected by a binary classification attack specifically designed to detect TrafficMimic. We evaluate the performance of tunneling with independent cover traffic models and find that they are comparable, and, in some cases, more efficient than generic constant-rate defenses. We then use simulation and analytic modeling to understand the performance of cover traffic tunneling more deeply. We find that we can take measurements from real or simulated traffic with no tunneling and use them to estimate parameters for an accurate analytic model of the performance impact of cover traffic tunneling. Once validated, we use this model to better understand how delay, bandwidth, tunnel slowdown, and stability affect cover traffic tunneling. Finally, we take the insights from our simulation study and develop several biasing techniques that we can use to match the cover traffic to the real traffic while simultaneously bounding external information leakage. We study these bias methods using simulation and evaluate their security using a Bayesian inference attack. We find that we can safely improve performance with biasing while preventing both traffic analysis and defense detection attacks. We then apply these biasing methods to the real TrafficMimic implementation and evaluate it on the Internet. We find that biasing can provide 3-5x improvement in bandwidth for bulk transfers and 2.5-9.5x speedup for Web browsing over tunneling without biasing.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This document presents GEmSysC, an unified cryptographic API for embedded systems. Software layers implementing this API can be built over existing libraries, allowing embedded software to access cryptographic functions in a consistent way that does not depend on the underlying library. The API complies to good practices for API design and good practices for embedded software development and took its inspiration from other cryptographic libraries and standards. The main inspiration for creating GEmSysC was the CMSIS-RTOS standard, which defines an unified API for embedded software in an implementation-independent way, but targets operating systems instead of cryptographic functions. GEmSysC is made of a generic core and attachable modules, one for each cryptographic algorithm. This document contains the specification of the core of GEmSysC and three of its modules: AES, RSA and SHA-256. GEmSysC was built targeting embedded systems, but this does not restrict its use only in such systems – after all, embedded systems are just very limited computing devices. As a proof of concept, two implementations of GEmSysC were made. One of them was built over wolfSSL, which is an open source library for embedded systems. The other was built over OpenSSL, which is open source and a de facto standard. Unlike wolfSSL, OpenSSL does not specifically target embedded systems. The implementation built over wolfSSL was evaluated in a Cortex- M3 processor with no operating system while the implementation built over OpenSSL was evaluated on a personal computer with Windows 10 operating system. This document displays test results showing GEmSysC to be simpler than other libraries in some aspects. These results have shown that both implementations incur in little overhead in computation time compared to the cryptographic libraries themselves. The overhead of the implementation has been measured for each cryptographic algorithm and is between around 0% and 0.17% for the implementation over wolfSSL and between 0.03% and 1.40% for the one over OpenSSL. This document also presents the memory costs for each implementation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The purpose of this paper is to isolate and discuss a distinctive type of Hiberno-Viking silver armring. Here termed the 'coiled armring', it is dated to the late ninth/early tenth centuries. The methods of manufacture, ornamentation, date and origins of the type are discussed and the objects are assessed against the background of hoard-associated material and related types of silver armrings. A descriptive catalogue of the material is provided.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bilinear pairings can be used to construct cryptographic systems with very desirable properties. A pairing performs a mapping on members of groups on elliptic and genus 2 hyperelliptic curves to an extension of the finite field on which the curves are defined. The finite fields must, however, be large to ensure adequate security. The complicated group structure of the curves and the expensive field operations result in time consuming computations that are an impediment to the practicality of pairing-based systems. The Tate pairing can be computed efficiently using the ɳT method. Hardware architectures can be used to accelerate the required operations by exploiting the parallelism inherent to the algorithmic and finite field calculations. The Tate pairing can be performed on elliptic curves of characteristic 2 and 3 and on genus 2 hyperelliptic curves of characteristic 2. Curve selection is dependent on several factors including desired computational speed, the area constraints of the target device and the required security level. In this thesis, custom hardware processors for the acceleration of the Tate pairing are presented and implemented on an FPGA. The underlying hardware architectures are designed with care to exploit available parallelism while ensuring resource efficiency. The characteristic 2 elliptic curve processor contains novel units that return a pairing result in a very low number of clock cycles. Despite the more complicated computational algorithm, the speed of the genus 2 processor is comparable. Pairing computation on each of these curves can be appealing in applications with various attributes. A flexible processor that can perform pairing computation on elliptic curves of characteristic 2 and 3 has also been designed. An integrated hardware/software design and verification environment has been developed. This system automates the procedures required for robust processor creation and enables the rapid provision of solutions for a wide range of cryptographic applications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Concerns have been raised in the past several years that introducing new transport protocols on the Internet has be- come increasingly difficult, not least because there is no agreed-upon way for a source end host to find out if a trans- port protocol is supported all the way to a destination peer. A solution to a similar problem—finding out support for IPv6—has been proposed and is currently being deployed: the Happy Eyeballs (HE) mechanism. HE has also been proposed as an efficient way for an application to select an appropriate transport protocol. Still, there are few, if any, performance evaluations of transport HE. This paper demonstrates that transport HE could indeed be a feasible solution to the transport support problem. The paper evaluates HE between TCP and SCTP using TLS encrypted and unencrypted traffic, and shows that although there is indeed a cost in terms of CPU load to introduce HE, the cost is rel- atively small, especially in comparison with the cost of using TLS encryption. Moreover, our results suggest that HE has a marginal impact on memory usage. Finally, by introduc- ing caching of previous connection attempts, the additional cost of transport HE could be significantly reduced.