899 resultados para Arbitrary dimension
Resumo:
In this work, we discuss some theoretical topics related to many-body physics in ultracold atomic and molecular gases. First, we present a comparison between experimental data and theoretical predictions in the context of quantum emulator of quantum field theories, finding good results which supports the efficiency of such simulators. In the second and third parts, we investigate several many-body properties of atomic and molecular gases confined in one dimension.
Resumo:
La specificità dell'acquisizione di contenuti attraverso le interfacce digitali condanna l'agente epistemico a un'interazione frammentata, insufficiente da un punto di vista computazionale, mnemonico e temporale, rispetto alla mole informazionale oggi accessibile attraverso una qualunque implementazione della relazione uomo-computer, e invalida l'applicabilità del modello standard di conoscenza, come credenza vera e giustificata, sconfessando il concetto di credenza razionalmente fondata, per formare la quale, sarebbe invece richiesto all'agente di poter disporre appunto di risorse concettuali, computazionali e temporali inaccessibili. La conseguenza è che l'agente, vincolato dalle limitazioni ontologiche tipiche dell'interazione con le interfacce culturali, si vede costretto a ripiegare su processi ambigui, arbitrari e spesso più casuali di quanto creda, di selezione e gestione delle informazioni che danno origine a veri e propri ibridi (alla Latour) epistemologici, fatti di sensazioni e output di programmi, credenze non fondate e bit di testimonianze indirette e di tutta una serie di relazioni umano-digitali che danno adito a rifuggire in una dimensione trascendente che trova nel sacro il suo più immediato ambito di attuazione. Tutto ciò premesso, il presente lavoro si occupa di costruire un nuovo paradigma epistemologico di conoscenza proposizionale ottenibile attraverso un'interfaccia digitale di acquisizione di contenuti, fondato sul nuovo concetto di Tracciatura Digitale, definito come un un processo di acquisizione digitale di un insieme di tracce, ossia meta-informazioni di natura testimoniale. Tale dispositivo, una volta riconosciuto come un processo di comunicazione di contenuti, si baserà sulla ricerca e selezione di meta-informazioni, cioè tracce, che consentiranno l'implementazione di approcci derivati dall'analisi decisionale in condizioni di razionalità limitata, approcci che, oltre ad essere quasi mai utilizzati in tale ambito, sono ontologicamente predisposti per una gestione dell'incertezza quale quella riscontrabile nell'istanziazione dell'ibrido informazionale e che, in determinate condizioni, potranno garantire l'agente sulla bontà epistemica del contenuto acquisito.
Resumo:
Diese Arbeit besch"aftigt sich mit algebraischen Zyklen auf komplexen abelschen Variet"aten der Dimension 4. Ziel der Arbeit ist ein nicht-triviales Element in $Griff^{3,2}(A^4)$ zu konstruieren. Hier bezeichnet $A^4$ die emph{generische} abelsche Variet"at der Dimension 4 mit Polarisierung von Typ $(1,2,2,2)$. Die ersten drei Kapitel sind eine Wiederholung von elementaren Definitionen und Begriffen und daher eine Festlegung der Notation. In diesen erinnern wir an elementare Eigenschaften der von Saito definierten Filtrierungen $F_S$ und $Z$ auf den Chowgruppen (vgl. cite{Sa0} und cite{Sa}). Wir wiederholen auch eine Beziehung zwischen der $F_S$-Filtrierung und der Zerlegung von Beauville der Chowgruppen (vgl. cite{Be2} und cite{DeMu}), welche aus cite{Mu} stammt. Die wichtigsten Begriffe in diesem Teil sind die emph{h"ohere Griffiths' Gruppen} und die emph{infinitesimalen Invarianten h"oherer Ordnung}. Dann besch"aftigen wir uns mit emph{verallgemeinerten Prym-Variet"aten} bez"uglich $(2:1)$ "Uberlagerungen von Kurven. Wir geben ihre Konstruktion und wichtige geometrische Eigenschaften und berechnen den Typ ihrer Polarisierung. Kapitel ref{p-moduli} enth"alt ein Resultat aus cite{BCV} "uber die Dominanz der Abbildung $p(3,2):mathcal R(3,2)longrightarrow mathcal A_4(1,2,2,2)$. Dieses Resultat ist von Relevanz f"ur uns, weil es besagt, dass die generische abelsche Variet"at der Dimension 4 mit Polarisierung von Typ $(1,2,2,2)$ eine verallgemeinerte Prym-Variet"at bez"uglich eine $(2:1)$ "Uberlagerung einer Kurve vom Geschlecht $7$ "uber eine Kurve vom Geschlecht $3$ ist. Der zweite Teil der Dissertation ist die eigentliche Arbeit und ist auf folgende Weise strukturiert: Kapitel ref{Deg} enth"alt die Konstruktion der Degeneration von $A^4$. Das bedeutet, dass wir in diesem Kapitel eine Familie $Xlongrightarrow S$ von verallgemeinerten Prym-Variet"aten konstruieren, sodass die klassifizierende Abbildung $Slongrightarrow mathcal A_4(1,2,2,2)$ dominant ist. Desweiteren wird ein relativer Zykel $Y/S$ auf $X/S$ konstruiert zusammen mit einer Untervariet"at $Tsubset S$, sodass wir eine explizite Beschreibung der Einbettung $Yvert _Thookrightarrow Xvert _T$ angeben k"onnen. Das letzte und wichtigste Kapitel enth"ahlt Folgendes: Wir beweisen dass, die emph{ infinitesimale Invariante zweiter Ordnung} $delta _2(alpha)$ von $alpha$ nicht trivial ist. Hier bezeichnet $alpha$ die Komponente von $Y$ in $Ch^3_{(2)}(X/S)$ unter der Beauville-Zerlegung. Damit und mit Hilfe der Ergebnissen aus Kapitel ref{Cohm} k"onnen wir zeigen, dass [ 0neq [alpha ] in Griff ^{3,2}(X/S) . ] Wir k"onnen diese Aussage verfeinern und zeigen (vgl. Theorem ref{a4}) begin{theorem}label{maintheorem} F"ur $sin S$ generisch gilt [ 0neq [alpha _s ]in Griff ^{3,2}(A^4) , ] wobei $A^4$ die generische abelsche Variet"at der Dimension $4$ mit Polarisierung vom Typ $(1,2,2,2)$ ist. end{theorem}
Resumo:
This dissertation presents the theory and the conducted activity that lead to the construction of a high voltage high frequency arbitrary waveform voltage generator. The generator has been specifically designed to supply power to a wide range of plasma actuators. The system has been completely designed, manufactured and tested at the Department of Electrical, Electronic and Information Engineering of the University of Bologna. The generator structure is based on the single phase cascaded H-bridge multilevel topology and is comprised of 24 elementary units that are series connected in order to form the typical staircase output voltage waveform of a multilevel converter. The total number of voltage levels that can be produced by the generator is 49. Each level is 600 V making the output peak-to-peak voltage equal to 28.8 kV. The large number of levels provides high resolution with respect to the output voltage having thus the possibility to generate arbitrary waveforms. Maximum frequency of operation is 20 kHz. A study of the relevant literature shows that this is the first time that a cascaded multilevel converter of such dimensions has been constructed. Isolation and control challenges had to be solved for the realization of the system. The biggest problem of the current technology in power supplies for plasma actuators is load matching. Resonant converters are the most used power supplies and are seriously affected by this problem. The manufactured generator completely solves this issue providing consistent voltage output independently of the connected load. This fact is very important when executing tests and during the comparison of the results because all measures should be comparable and not dependent from matching issues. The use of the multilevel converter for power supplying a plasma actuator is a real technological breakthrough that has provided and will continue to provide very significant experimental results.
Resumo:
Zusammenfassung In der vorliegenden Arbeit besch¨aftige ich mich mit Differentialgleichungen von Feynman– Integralen. Ein Feynman–Integral h¨angt von einem Dimensionsparameter D ab und kann f¨ur ganzzahlige Dimension als projektives Integral dargestellt werden. Dies ist die sogenannte Feynman–Parameter Darstellung. In Abh¨angigkeit der Dimension kann ein solches Integral divergieren. Als Funktion in D erh¨alt man eine meromorphe Funktion auf ganz C. Ein divergentes Integral kann also durch eine Laurent–Reihe ersetzt werden und dessen Koeffizienten r¨ucken in das Zentrum des Interesses. Diese Vorgehensweise wird als dimensionale Regularisierung bezeichnet. Alle Terme einer solchen Laurent–Reihe eines Feynman–Integrals sind Perioden im Sinne von Kontsevich und Zagier. Ich beschreibe eine neue Methode zur Berechnung von Differentialgleichungen von Feynman– Integralen. ¨ Ublicherweise verwendet man hierzu die sogenannten ”integration by parts” (IBP)– Identit¨aten. Die neue Methode verwendet die Theorie der Picard–Fuchs–Differentialgleichungen. Im Falle projektiver oder quasi–projektiver Variet¨aten basiert die Berechnung einer solchen Differentialgleichung auf der sogenannten Griffiths–Dwork–Reduktion. Zun¨achst beschreibe ich die Methode f¨ur feste, ganzzahlige Dimension. Nach geeigneter Verschiebung der Dimension erh¨alt man direkt eine Periode und somit eine Picard–Fuchs–Differentialgleichung. Diese ist inhomogen, da das Integrationsgebiet einen Rand besitzt und daher nur einen relativen Zykel darstellt. Mit Hilfe von dimensionalen Rekurrenzrelationen, die auf Tarasov zur¨uckgehen, kann in einem zweiten Schritt die L¨osung in der urspr¨unglichen Dimension bestimmt werden. Ich beschreibe außerdem eine Methode, die auf der Griffiths–Dwork–Reduktion basiert, um die Differentialgleichung direkt f¨ur beliebige Dimension zu berechnen. Diese Methode ist allgemein g¨ultig und erspart Dimensionswechsel. Ein Erfolg der Methode h¨angt von der M¨oglichkeit ab, große Systeme von linearen Gleichungen zu l¨osen. Ich gebe Beispiele von Integralen von Graphen mit zwei und drei Schleifen. Tarasov gibt eine Basis von Integralen an, die Graphen mit zwei Schleifen und zwei externen Kanten bestimmen. Ich bestimme Differentialgleichungen der Integrale dieser Basis. Als wichtigstes Beispiel berechne ich die Differentialgleichung des sogenannten Sunrise–Graphen mit zwei Schleifen im allgemeinen Fall beliebiger Massen. Diese ist f¨ur spezielle Werte von D eine inhomogene Picard–Fuchs–Gleichung einer Familie elliptischer Kurven. Der Sunrise–Graph ist besonders interessant, weil eine analytische L¨osung erst mit dieser Methode gefunden werden konnte, und weil dies der einfachste Graph ist, dessen Master–Integrale nicht durch Polylogarithmen gegeben sind. Ich gebe außerdem ein Beispiel eines Graphen mit drei Schleifen. Hier taucht die Picard–Fuchs–Gleichung einer Familie von K3–Fl¨achen auf.
Resumo:
This thesis is on loop-induced processes in theories with warped extra dimensions where the fermions and gauge bosons are allowed to propagate in the bulk, while the Higgs sector is localized on or near the infra-red brane. These so-called Randall-Sundrum (RS) models have the potential to simultaneously explain the hierarchy problem and address the question of what causes the large hierarchies in the fermion sector of the Standard Model (SM). The Kaluza-Klein (KK) excitations of the bulk fields can significantly affect the loop-level processes considered in this thesis and, hence, could indirectly indicate the existence of warped extra dimensions. The analytical part of this thesis deals with the detailed calculation of three loop-induced processes in the RS models in question: the Higgs production process via gluon fusion, the Higgs decay into two photons, and the flavor-changing neutral current b → sγ. A comprehensive, five-dimensional (5D) analysis will show that the amplitudes of the Higgs processes can be expressed in terms of integrals over 5D propagators with the Higgs-boson profile along the extra dimension, which can be used for arbitrary models with a compact extra dimension. To this end, both the boson and fermion propagators in a warped 5D background are derived. It will be shown that the seemingly contradictory results for the gluon fusion amplitude in the literature can be traced back to two distinguishable, not smoothly-connected incarnations of the RS model. The investigation of the b → sγ transition is performed in the KK decomposed theory. It will be argued that summing up the entire KK tower leads to a finite result, which can be well approximated by a closed, analytical expression.rnIn the phenomenological part of this thesis, the analytic results of all relevant Higgs couplings in the RS models in question are compared with current and in particular future sensitivities of the Large Hadron Collider (LHC) and the planned International Linear Collider. The latest LHC Higgs data is then used to exclude significant portions of the parameter space of each RS scenario. The analysis will demonstrate that especially the loop-induced Higgs couplings are sensitive to KK particles of the custodial RS model with masses in the multi tera-electronvolt range. Finally, the effect of the RS model on three flavor observables associated with the b → sγ transition are examined. In particular, we study the branching ratio of the inclusive decay B → X_s γ
Resumo:
We give a brief review of the Functional Renormalization method in quantum field theory, which is intrinsically non perturbative, in terms of both the Polchinski equation for the Wilsonian action and the Wetterich equation for the generator of the proper verteces. For the latter case we show a simple application for a theory with one real scalar field within the LPA and LPA' approximations. For the first case, instead, we give a covariant "Hamiltonian" version of the Polchinski equation which consists in doing a Legendre transform of the flow for the corresponding effective Lagrangian replacing arbitrary high order derivative of fields with momenta fields. This approach is suitable for studying new truncations in the derivative expansion. We apply this formulation for a theory with one real scalar field and, as a novel result, derive the flow equations for a theory with N real scalar fields with the O(N) internal symmetry. Within this new approach we analyze numerically the scaling solutions for N=1 in d=3 (critical Ising model), at the leading order in the derivative expansion with an infinite number of couplings, encoded in two functions V(phi) and Z(phi), obtaining an estimate for the quantum anomalous dimension with a 10% accuracy (confronting with Monte Carlo results).
Resumo:
It is not well known if the size of the ascending thoracic aorta at presentation predicts features of presentation, management, and outcomes in patients with acute type B aortic dissection. The International Registry of Acute Aortic Dissection (IRAD) database was queried for all patients with acute type B dissection who had documentation of ascending thoracic aortic size at time of presentation. Patients were categorized according to ascending thoracic aortic diameters ≤4.0, 4.1 to 4.5, and ≥4.6 cm. Four hundred eighteen patients met inclusion criteria; 291 patients (69.6%) were men with a mean age of 63.2 ± 13.5 years. Ascending thoracic aortic diameter ≤4.0 cm was noted in 250 patients (59.8%), 4.1 to 4.5 cm in 105 patients (25.1%), and ≥4.6 cm in 63 patients (15.1%). Patients with an ascending thoracic aortic diameter ≥4.6 cm were more likely to be men (p = 0.01) and have Marfan syndrome (p <0.001) and known bicuspid aortic valve disease (p = 0.003). In patients with an ascending thoracic aorta ≥4.1 cm, there was an increased incidence of surgical intervention (p = 0.013). In those with an ascending thoracic aorta ≥4.6 cm, the root, ascending aorta, arch, and aortic valve were more often involved in surgical repair. Patients with an ascending thoracic aorta ≤4.0 were more likely to have endovascular therapy than those with larger ascending thoracic aortas (p = 0.009). There was no difference in overall mortality or cause of death. In conclusion, ascending thoracic aortic enlargement in patients with acute type B aortic dissection is common. Although its presence does not appear to predict an increased risk of mortality, it is associated with more frequent open surgical intervention that often involves replacement of the proximal aorta. Those with smaller proximal aortas are more likely to receive endovascular therapy.
Resumo:
Let M^{2n} be a symplectic toric manifold with a fixed T^n-action and with a toric K\"ahler metric g. Abreu asked whether the spectrum of the Laplace operator $\Delta_g$ on $\mathcal{C}^\infty(M)$ determines the moment polytope of M, and hence by Delzant's theorem determines M up to symplectomorphism. We report on some progress made on an equivariant version of this conjecture. If the moment polygon of M^4 is generic and does not have too many pairs of parallel sides, the so-called equivariant spectrum of M and the spectrum of its associated real manifold M_R determine its polygon, up to translation and a small number of choices. For M of arbitrary even dimension and with integer cohomology class, the equivariant spectrum of the Laplacian acting on sections of a naturally associated line bundle determines the moment polytope of M.