859 resultados para Analytical Model
Resumo:
This research explores whether civil society organizations (CSOs) can contribute to more effectively regulating the working conditions of temporary migrant farmworkers in North America. This dissertation unfolds in five parts. The first part of the dissertation sets out the background context. The context includes the political economy of agriculture and temporary migrant labour more broadly. It also includes the political economy of the legal regulations that govern immigration and work relations. The second part of the research builds an analytical model for studying the operation of CSOs active in working with the migrant farmworker population. The purpose of the analytical framework is to make sense of real-world examples by providing categories for analysis and a means to get at the channels of influence that CSOs utilize to achieve their aims. To this end, the model incorporates the insights from three significant bodies of literature—regulatory studies, labour studies, and economic sociology. The third part of the dissertation suggests some key strategic issues that CSOs should consider when intervening to assist migrant farmworkers, and also proposes a series of hypotheses about how CSOs can participate in the regulatory process. The fourth part probes and extends these hypotheses by empirically investigating the operation of three CSOs that are currently active in assisting migrant farm workers in North America: the Agricultural Workers Alliance (Canada), Global Workers’ Justice Alliance (USA), and the Coalition of Immokalee Workers (USA). The fifth and final part draws together lessons from the empirical work and concluded that CSOs can fill gaps left by the waning power of actors, such as trade unions and labour inspectorates, as well as act in ways that these traditional actors can not.
Resumo:
Multi-frequency Eddy Current (EC) inspection with a transmit-receive probe (two horizontally offset coils) is used to monitor the Pressure Tube (PT) to Calandria Tube (CT) gap of CANDU® fuel channels. Accurate gap measurements are crucial to ensure fitness of service; however, variations in probe liftoff, PT electrical resistivity, and PT wall thickness can generate systematic measurement errors. Validated mathematical models of the EC probe are very useful for data interpretation, and may improve the gap measurement under inspection conditions where these parameters vary. As a first step, exact solutions for the electromagnetic response of a transmit-receive coil pair situated above two parallel plates separated by an air gap were developed. This model was validated against experimental data with flat-plate samples. Finite element method models revealed that this geometrical approximation could not accurately match experimental data with real tubes, so analytical solutions for the probe in a double-walled pipe (the CANDU® fuel channel geometry) were generated using the Second-Order Vector Potential (SOVP) formalism. All electromagnetic coupling coefficients arising from the probe, and the layered conductors were determined and substituted into Kirchhoff’s circuit equations for the calculation of the pickup coil signal. The flat-plate model was used as a basis for an Inverse Algorithm (IA) to simultaneously extract the relevant experimental parameters from EC data. The IA was validated over a large range of second layer plate resistivities (1.7 to 174 µΩ∙cm), plate wall thickness (~1 to 4.9 mm), probe liftoff (~2 mm to 8 mm), and plate-to plate gap (~0 mm to 13 mm). The IA achieved a relative error of less than 6% for the extracted FP resistivity and an accuracy of ±0.1 mm for the LO measurement. The IA was able to achieve a plate gap measurement with an accuracy of less than ±0.7 mm error over a ~2.4 mm to 7.5 mm probe liftoff and ±0.3 mm at nominal liftoff (2.42±0.05 mm), providing confidence in the general validity of the algorithm. This demonstrates the potential of using an analytical model to extract variable parameters that may affect the gap measurement accuracy.
Resumo:
Through a fine-grained reading of a London-French blog, this article aims to shed light on the lived experience of the French community in London. The ethnosemiotic conceptual framework brings together ethnographic and semiotic schools of thought, focusing in particular on Pierre Bourdieu’s concept of habitus and Gunther Kress’s multimodal social semiotic analytical model. Habitus is broken down into its material manifestations of habitat, habit and habituation, all displayed in the blog and revealing of the blogger’s identity and positioning within the migration setting. As all modes are considered to be of equal semiotic potential, equivalent emphasis is placed on the multiple modes of meaning-making present in the blog, such as layout, colour, typography and language. By examining the dynamic relationships between blogger and audience, subjectivity and objectivity, on-line and on-land habitus, and intermodal dynamics themselves, through the prism of multimodality, hidden facets of the blogger’s cultural identity and sense of community belonging within the diasporic context begin to materialise.
Resumo:
Titel: Faktorer som kan påverka företags val mellan K2 och K3 Författare: Angelica Höglund och Julia Wiman Handledare: Klas Sundberg Bakgrund och problem: Det nya K-regelverket som infördes 1 januari 2014 innebär att mindre onoterade företag idag har valmöjligheten att välja mellan regelverken K2 och K3. För dessa mindre företag är valet av regelverk viktigt då det kommer att påverka företagets räkenskaper. Syfte: Syftet med studien är att studera fördelningen av K2 och K3 för mindre onoterade företag inom två olika branscher, dessa är byggbranschen och juridik,- ekonomi- och konsultbranschen, samt vilka faktorer som kan påverka valet av regelverk. Teori: Studien bygger på två teorier, dessa är positive accounting theory och institutionell teori. Metod: I studien används en kvantitativ forskningsmetod där årsredovisningar har granskats och sammanställts, samt en kvalitativ metod som bygger på fyra semistrukturerade intervjuer där de identifierade faktorerna analyserats utifrån en analysmodell. Resultat och slutsats: Utifrån det empiriska materialet identifierades sju faktorer, dessa var leasing, företagets storlek, rättvisande bild, revisorns påverkan, komponentavskrivning, kostnad/nytta och koncernredovisning. Ovanstående faktorer har kategoriserats och analyserats utifrån PAT och institutionell teori. Förslag till vidare forskning: Ett förslag vore att forska vidare på de identifierade faktorerna för att undersöka i hur stor utsträckning de påverkar företagens beslut. En intressant studie hade även varit att genomföra en fallstudie som utgår från att upprätta en årsredovisning utifrån både K2 och K3 för att studera de skillnader som kan uppkomma.
L'impact du glissement en fréquence lors de l'accélération directe d'électrons par le faisceau laser
Resumo:
L’accélération directe d’électrons par des impulsions ultrabrèves de polarisation radiale fortement focalisées démontre un grand potentiel, notamment, pour la production de paquets d’électrons ultrabrefs. Plusieurs aspects de ce schéma d’accélération restent toutefois à être explorés pour en permettre une maîtrise approfondie. Dans le cadre du présent mémoire, on s’intéresse à l’ajout d’une dérive de fréquence au champ de l’impulsion TM01 utilisée. Les expressions exactes des composantes du champ électromagnétique de l’impulsion TM01 sont établies à partir d’une généralisation du spectre de Poisson. Il s’agit, à notre connaissance, du premier modèle analytique exact pour la description d’une impulsion avec une dérive de fréquence. Ce modèle est utilisé pour étudier l’impact du glissement en fréquence sur le schéma d’accélération, grâce à des simulations “particule test” unidimensionnelles, considérant en premier lieu une énergie constante par impulsion, puis un champ maximum constant. Les résultats révèlent que le glissement en fréquence diminue le gain en énergie maximum atteignable dans le cadre du schéma d’accélération à l’étude ; une baisse d’efficacité de plusieurs dizaines de pourcents peut survenir. De plus, les simulations mettent en évidence certaines différences reliées à l’utilisation d’impulsions avec une dérive vers les basses fréquences ou avec une dérive vers les hautes fréquences : il se trouve que, pour un glissement en fréquence de même grandeur, l’impulsion avec une dérive vers les basses fréquences conduit à un gain en énergie cinétique maximum plus élevé pour l’électron que l’impulsion avec une dérive vers les hautes fréquences.
Resumo:
In the light of the twofold mission of Swedish schools, that is to say enabling pupils to develop both subject knowledge and a democratic attitude, the purpose of this thesis is to investigate to what extent adult higher education students from different language and social backgrounds, studying Swedish as a second language, are able to carry out joint writing assignments with the aid of deliberative discourse, and to what extent they thereby also develop a deliberative attitude. The twofold mission of education applies to them too. While there already exists a certain amount of research into deliberative discourse relating to education in schools, the perspective of higher education didactics in this research is still lacking. The present study is to be viewed as a first contribution to this research. The theoretical starting point of this study includes previous research into deliberative discourse by further developing an existing model regarding criteria for deliberative discourse, for example that there is a striving towards agreement, although the consensus may be temporary, that diverging opinions can be set against each other, that tolerance and respect for views other than one’s own are shown, and that traditional outlooks can be questioned. This model is supplemented by designations for a number of disruptive behaviours, such as ridiculing, ignoring, interrupting people and engaging in private conversations. The thus further developed model will thereafter act as a lens in the analysis of students’ discussions when writing joint texts. Another theoretical starting point is the view of education as communication, and of the possibility of communication creating a third place, thereby developing democracy in the here and now-situation. For this study, comprising 18 hours of observation of nine students, that is to say the discussions of three groups in connection with writing texts on different occasions, various ethnographic data collection methods have been employed, for example video recordings, participant observations, field notes and interviews in conjunction with the discussions. The analysis clarifies that the three groups developed their deliberation as the discussions about the joint assignment proceeded, and that most of the nine students furthermore expressed at least an openness towards a deliberative attitude for further discussions in the future. The disruptive behaviours mentioned in connection with the analytical model that could be identified in the discussions, for example interruptions and private conversations, proved not to constitute real disturbances; on the contrary they actually contributed towards the discussions developing, enabling them to continue. On the other hand, other and not previously identified disturbances occurred, for example a focus on grades, the lack of time and lacking language ability, which all in different ways affected the students’ attitudes towards their work. For any future didactical work on deliberative discourse in Swedish as a second language within higher education, these disturbances would need to be highlighted and made aware of for both teachers and students. Keywords: higher education didactics, communication, deliberative discourse, deliberative attitude, John Dewey, Tomas Englund, heterogeneity, ethnographic data collection methods.
Resumo:
In the recent years, vibration-based structural damage identification has been subject of significant research in structural engineering. The basic idea of vibration-based methods is that damage induces mechanical properties changes that cause anomalies in the dynamic response of the structure, which measures allow to localize damage and its extension. Vibration measured data, such as frequencies and mode shapes, can be used in the Finite Element Model Updating in order to adjust structural parameters sensible at damage (e.g. Young’s Modulus). The novel aspect of this thesis is the introduction into the objective function of accurate measures of strains mode shapes, evaluated through FBG sensors. After a review of the relevant literature, the case of study, i.e. an irregular prestressed concrete beam destined for roofing of industrial structures, will be presented. The mathematical model was built through FE models, studying static and dynamic behaviour of the element. Another analytical model was developed, based on the ‘Ritz method’, in order to investigate the possible interaction between the RC beam and the steel supporting table used for testing. Experimental data, recorded through the contemporary use of different measurement techniques (optical fibers, accelerometers, LVDTs) were compared whit theoretical data, allowing to detect the best model, for which have been outlined the settings for the updating procedure.
Resumo:
The partial collapse of a building in Colombia caused severe damage to its structural components -- An implosion was realized to induce the collapse of 50% of the deteriorated building -- To evaluate the influence of the implosion on the remaining structure, a monitoring survey was realized using triaxial accelerometers -- Time signals associated with ambient, seismic and forced vibration were obtained -- A study of the records in the time and the frequency domain was made -- The analysis of the information allowed determining some structural properties that were useful to calibrate the analytical model of the structure
Resumo:
Ground plane slot structures have been shown to reduce coupling between cosited antennas. Although some such structures have already been reported, no analytical model exists to describe their behavior and there are no design guidelines. In this work, the behavior of reported ground plane structures is used as a clue to obtain generalizable information about such structures' behavior. The structures' scalability and excitation behavior is investigated. Next a circuit model is derived that describes the interaction of microstrip patch antennas with a ground plane slot structure based on mutual admittances between the ground plane slots and the effective slots at the antennas' radiating edges. The circuit model leads to design guidelines for the ground plane slot structure and an approximate relationship between mutual admittances which must be satisfied in order to isolate the antennas. Finally, we present a novel ground plane slot structure that mitigates some of the disadvantages of earlier designs.
Resumo:
The PhD project addresses the potential of using concentrating solar power (CSP) plants as a viable alternative energy producing system in Libya. Exergetic, energetic, economic and environmental analyses are carried out for a particular type of CSP plants. The study, although it aims a particular type of CSP plant – 50 MW parabolic trough-CSP plant, it is sufficiently general to be applied to other configurations. The novelty of the study, in addition to modeling and analyzing the selected configuration, lies in the use of a state-of-the-art exergetic analysis combined with the Life Cycle Assessment (LCA). The modeling and simulation of the plant is carried out in chapter three and they are conducted into two parts, namely: power cycle and solar field. The computer model developed for the analysis of the plant is based on algebraic equations describing the power cycle and the solar field. The model was solved using the Engineering Equation Solver (EES) software; and is designed to define the properties at each state point of the plant and then, sequentially, to determine energy, efficiency and irreversibility for each component. The developed model has the potential of using in the preliminary design of CSPs and, in particular, for the configuration of the solar field based on existing commercial plants. Moreover, it has the ability of analyzing the energetic, economic and environmental feasibility of using CSPs in different regions of the world, which is illustrated for the Libyan region in this study. The overall feasibility scenario is completed through an hourly analysis on an annual basis in chapter Four. This analysis allows the comparison of different systems and, eventually, a particular selection, and it includes both the economic and energetic components using the “greenius” software. The analysis also examined the impact of project financing and incentives on the cost of energy. The main technological finding of this analysis is higher performance and lower levelized cost of electricity (LCE) for Libya as compared to Southern Europe (Spain). Therefore, Libya has the potential of becoming attractive for the establishment of CSPs in its territory and, in this way, to facilitate the target of several European initiatives that aim to import electricity generated by renewable sources from North African and Middle East countries. The analysis is presented a brief review of the current cost of energy and the potential of reducing the cost from parabolic trough- CSP plant. Exergetic and environmental life cycle assessment analyses are conducted for the selected plant in chapter Five; the objectives are 1) to assess the environmental impact and cost, in terms of exergy of the life cycle of the plant; 2) to find out the points of weakness in terms of irreversibility of the process; and 3) to verify whether solar power plants can reduce environmental impact and the cost of electricity generation by comparing them with fossil fuel plants, in particular, Natural Gas Combined Cycle (NGCC) plant and oil thermal power plant. The analysis also targets a thermoeconomic analysis using the specific exergy costing (SPECO) method to evaluate the level of the cost caused by exergy destruction. The main technological findings are that the most important contribution impact lies with the solar field, which reports a value of 79%; and the materials with the vi highest impact are: steel (47%), molten salt (25%) and synthetic oil (21%). The “Human Health” damage category presents the highest impact (69%) followed by the “Resource” damage category (24%). In addition, the highest exergy demand is linked to the steel (47%); and there is a considerable exergetic demand related to the molten salt and synthetic oil with values of 25% and 19%, respectively. Finally, in the comparison with fossil fuel power plants (NGCC and Oil), the CSP plant presents the lowest environmental impact, while the worst environmental performance is reported to the oil power plant followed by NGCC plant. The solar field presents the largest value of cost rate, where the boiler is a component with the highest cost rate among the power cycle components. The thermal storage allows the CSP plants to overcome solar irradiation transients, to respond to electricity demand independent of weather conditions, and to extend electricity production beyond the availability of daylight. Numerical analysis of the thermal transient response of a thermocline storage tank is carried out for the charging phase. The system of equations describing the numerical model is solved by using time-implicit and space-backward finite differences and which encoded within the Matlab environment. The analysis presented the following findings: the predictions agree well with the experiments for the time evolution of the thermocline region, particularly for the regions away from the top-inlet. The deviations observed in the near-region of the inlet are most likely due to the high-level of turbulence in this region due to the localized level of mixing resulting; a simple analytical model to take into consideration this increased turbulence level was developed and it leads to some improvement of the predictions; this approach requires practically no additional computational effort and it relates the effective thermal diffusivity to the mean effective velocity of the fluid at each particular height of the system. Altogether the study indicates that the selected parabolic trough-CSP plant has the edge over alternative competing technologies for locations where DNI is high and where land usage is not an issue, such as the shoreline of Libya.
Resumo:
Resource allocation decisions are made to serve the current emergency without knowing which future emergency will be occurring. Different ordered combinations of emergencies result in different performance outcomes. Even though future decisions can be anticipated with scenarios, previous models follow an assumption that events over a time interval are independent. This dissertation follows an assumption that events are interdependent, because speed reduction and rubbernecking due to an initial incident provoke secondary incidents. The misconception that secondary incidents are not common has resulted in overlooking a look-ahead concept. This dissertation is a pioneer in relaxing the structural assumptions of independency during the assignment of emergency vehicles. When an emergency is detected and a request arrives, an appropriate emergency vehicle is immediately dispatched. We provide tools for quantifying impacts based on fundamentals of incident occurrences through identification, prediction, and interpretation of secondary incidents. A proposed online dispatching model minimizes the cost of moving the next emergency unit, while making the response as close to optimal as possible. Using the look-ahead concept, the online model flexibly re-computes the solution, basing future decisions on present requests. We introduce various online dispatching strategies with visualization of the algorithms, and provide insights on their differences in behavior and solution quality. The experimental evidence indicates that the algorithm works well in practice. After having served a designated request, the available and/or remaining vehicles are relocated to a new base for the next emergency. System costs will be excessive if delay regarding dispatching decisions is ignored when relocating response units. This dissertation presents an integrated method with a principle of beginning with a location phase to manage initial incidents and progressing through a dispatching phase to manage the stochastic occurrence of next incidents. Previous studies used the frequency of independent incidents and ignored scenarios in which two incidents occurred within proximal regions and intervals. The proposed analytical model relaxes the structural assumptions of Poisson process (independent increments) and incorporates evolution of primary and secondary incident probabilities over time. The mathematical model overcomes several limiting assumptions of the previous models, such as no waiting-time, returning rule to original depot, and fixed depot. The temporal locations flexible with look-ahead are compared with current practice that locates units in depots based on Poisson theory. A linearization of the formulation is presented and an efficient heuristic algorithm is implemented to deal with a large-scale problem in real-time.
Resumo:
This dissertation presents work done in the design, modeling, and fabrication of magnetically actuated microrobot legs. Novel fabrication processes for manufacturing multi-material compliant mechanisms have been used to fabricate effective legged robots at both the meso and micro scales, where the meso scale refers to the transition between macro and micro scales. This work discusses the development of a novel mesoscale manufacturing process, Laser Cut Elastomer Refill (LaCER), for prototyping millimeter-scale multi-material compliant mechanisms with elastomer hinges. Additionally discussed is an extension of previous work on the development of a microscale manufacturing process for fabricating micrometer-sale multi-material compliant mechanisms with elastomer hinges, with the added contribution of a method for incorporating magnetic materials for mechanism actuation using externally applied fields. As both of the fabrication processes outlined make significant use of highly compliant elastomer hinges, a fast, accurate modeling method for these hinges was desired for mechanism characterization and design. An analytical model was developed for this purpose, making use of the pseudo rigid-body (PRB) model and extending its utility to hinges with significant stretch component, such as those fabricated from elastomer materials. This model includes 3 springs with stiffnesses relating to material stiffness and hinge geometry, with additional correction factors for aspects particular to common multi-material hinge geometry. This model has been verified against a finite element analysis model (FEA), which in turn was matched to experimental data on mesoscale hinges manufactured using LaCER. These modeling methods have additionally been verified against experimental data from microscale hinges manufactured using the Si/elastomer/magnetics MEMS process. The development of several mechanisms is also discussed: including a mesoscale LaCER-fabricated hexapedal millirobot capable of walking at 2.4 body lengths per second; prototyped mesoscale LaCER-fabricated underactuated legs with asymmetrical features for improved performance; 1 centimeter cubed LaCER-fabricated magnetically-actuated hexapods which use the best-performing underactuated leg design to locomote at up to 10.6 body lengths per second; five microfabricated magnetically actuated single-hinge mechanisms; a 14-hinge, 11-link microfabricated gripper mechanism; a microfabricated robot leg mechansim demonstrated clearing a step height of 100 micrometers; and a 4 mm x 4 mm x 5 mm, 25 mg microfabricated magnetically-actuated hexapod, demonstrated walking at up to 2.25 body lengths per second.
Resumo:
We investigate the resonant rotation of co-orbital bodies in eccentric and planar orbits. We develop a simple analytical model to study the impact of the eccentricity and orbital perturbations on the spin dynamics. This model is relevant in the entire domain of horseshoe and tadpole orbit, for moderate eccentricities. We show that there are three different families of spin-orbit resonances, one depending on the eccentricity, one depending on the orbital libration frequency, and another depending on the pericenter's dynamics. We can estimate the width and the location of the different resonant islands in the phase space, predicting which are the more likely to capture the spin of the rotating body. In some regions of the phase space the resonant islands may overlap, giving rise to chaotic rotation.
Resumo:
The evaluation of the mesh opening stiffness of fishing nets is an important issue in assessing the selectivity of trawls. It appeared that a larger bending rigidity of twines decreases the mesh opening and could reduce the escapement of fish. Nevertheless, netting structure is complex. A netting is made up of braided twines made of polyethylene or polyamide. These twines are tied with non-symmetrical knots. Thus, these assemblies develop contact-friction interactions. Moreover, the netting can be subject to large deformation. In this study, we investigate the responses of netting samples to different types of solicitations. Samples are loaded and unloaded with creep and relaxation stages, with different boundary conditions. Then, two models have been developed: an analytical model and a finite element model. The last one was used to assess, with an inverse identification algorithm, the bending stiffness of twines. In this paper, experimental results and a model for netting structures made up of braided twines are presented. During dry forming of a composite, for example, the matrix is not present or not active, and relative sliding can occur between constitutive fibres. So an accurate modelling of the mechanical behaviour of fibrous material is necessary. This study offers experimental data which could permit to improve current models of contact-friction interactions [4], to validate models for large deformation analysis of fibrous materials [1] on a new experimental case, then to improve the evaluation of the mesh opening stiffness of a fishing net
Resumo:
This manuscript presents three approaches : analytical, experimental and numerical, to study the behaviour of a flexible membrane tidal energy converter. This technology, developed by the EEL Energy company, is based on periodic deformations of a pre-stressed flexible structure. Energy converters, located on each side of the device, are set into motion by the wave-like motion. In the analytical model, the membrane is represented by a linear beam model at one dimension and the flow by a 3 dimensions potential fluid. The fluid forces are evaluated by the elongated body theory. Energy is dissipated all over the length of the membrane. A 20th scale experimental prototype has been designed with micro-dampers to simulate the power take-off. Trials have allowed to validate the undulating membrane energy converter concept. A numerical model has been developed. Each element of the device is represented and the energy dissipation is done by dampers element with a damping law linear to damper velocity. Comparison of the three approaches validates their ability to represent the membrane behaviour without damping. The energy dissipation applied with the analytical model is clearly different from the two other models because of the location (where the energy is dissipated) and damping law. The two others show a similar behaviour and the same order of power take off repartition but value of power take off are underestimated by the numerical model. This three approaches have allowed to put forward key-parameters on which depend the behaviour of the membrane and the parametric study highlights the complementarity and the advantage of developing three approaches in parallel to answer industrial optimization problems. To make the link between trials in flume tank and sea trials, a 1/6th prototype has been built. To do so, the change of scale was studied. The behaviour of both prototypes is compared and differences could be explained by differences of boundary conditions and confinement effects. To evaluated membrane long-term behaviour at sea, a method of ageing accelerated by temperature and fatigue tests have been carried out on prototype materials samples submerged in sea water.