974 resultados para Alkenone, C37:3 C37:2
Resumo:
The isotopic fractionation of hydrogen during the biosynthesis of alkenones produced by marine haptophyte algae has been shown to depend on salinity and, as such, the hydrogen isotopic composition of alkenones is emerging as a palaeosalinity proxy. The relationship between fractionation and salinity has previously only been determined during exponential growth, whilst it is not yet known in which growth phases natural haptophyte populations predominantly exist. We have therefore determined the relationship between the fractionation factor, alpha alkenones-water, and salinity for C37 alkenones produced in different growth phases of batch cultures of the major alkenone-producing coastal haptophytes Isochrysis galbana (strain CCMP 1323) and Chrysotila lamellosa (strain CCMP 1307) over a range in salinity from ca. 10 to ca. 35. alpha alkenones-water was similar in both species, ranging over 0.841-0.900 for I. galbana and 0.838-0.865 for C. lamellosa. A strong (0.85 <= R**2 <= 0.97; p < 0.0001) relationship between salinity and fractionation factor was observed in both species at all growth phases investigated. This suggests that alkenone dD has the potential to be used as a salinity proxy in coastal areas where haptophyte communities are dominated by these coastal species. However, there was a marked difference in the sensitivity of alpha alkenones-water to salinity between different growth phases: in the exponential growth phase of I. galbana, alpha alkenones-water increased by 0.0019 per salinity unit (S 1), but was less sensitive at 0.0010 S 1 and 0.0008 S 1 during the stationary and decline phases, respectively. Similarly, in C. lamellosa alpha alkenones-water increased by 0.0010 S 1 in the early stationary phase and by 0.0008 S 1 during the late stationary phase. Assuming the shift in sensitivity of alpha alkenones-water to salinity observed at the end of exponential growth in I. galbana is similar in other alkenone-producing species, the predominant growth phase of natural populations of haptophytes will affect the sensitivity of the alkenone salinity proxy. The proxy is likely to be most sensitive to salinity when alkenones are produced in a state similar to exponential growth.
Resumo:
Angola Basin and Walvis Ridge records of past sea surface temperatures (SST) derived from the alkenone Uk 37 index are used to reconstruct the surface circulation in the east equatorial South Atlantic for the last 200,000 years. Comparison of SST estimates from surface sediments between 5° and 20°S with modern SST data suggests that the alkenone temperatures represent annual mean values of the surface mixed layer. Alkenone-derived temperatures for the warm climatic maxima of the Holocene and the penultimate interglacial are 1 to 4°C higher than latest Holocene values. All records show glacial to interglacial differences of about 3.5°C in annual mean SST, which is about 1.5°C greater than the difference estimated by CLIMAP (1981) for the eastern Angola Basin. At the Walvis Ridge, significant SST variance is observed at all of the Earth's orbital periodicities. SST records from the Angola Basin vary predominantly at 23- and 100-kyr periodicities. For the precessional cycle, SST changes at the Walvis Ridge correspond to variations of boreal summer insolation over Africa and lead ice volume changes, suggesting that the east equatorial South Atlantic is sensitive to African monsoon intensity via trade-wind zonality. Angola Basin SST records lag those from the Walvis Ridge and the equatorial Atlantic by about 3 kyr. The comparison of Angola Basin and Walvis Ridge SST records implies that the Angola-Benguela Front (ABF) (currently at about 14-16°S) has remained fairly stationary between 12° and 20°S (the limits of our cores) during the last two glacial-interglacial cycles. The temperature contrast associated with the ABF exhibits a periodic 23-kyr variability which is coherent with changes in boreal summer insolation over Africa. These observations suggest that surface waters north of the present ABF have not directly responded to monsoon-modulated changes in the trade-wind vector, that the central field of zonally directed trades in the southern hemisphere was not shifted or extended northward by several degrees of latitude during glacials, and that a cyclonic gyre circulation has existed in the east equatorial South Atlantic over the last 200,000 years. This scenario contradicts former assumptions of glacial intensification of the Benguela Current into the eastern Angola Basin and increased coastal upwelling off Angola.
Resumo:
Evidence for abrupt climate changes on millennial and shorter timescales is widespread in marine and terrestrial climate records (Dansgard et al., 1993, doi:10.1038/364218a0; Bond et al., 1993, doi:10.1038/365143a0; Charles et al., 1996, doi:10.1016/0012-821X(96)00083-0, Bard et al., 1997, doi:10.1038/385707a0). Rapid reorganization of ocean circulation is considered to exert some control over these changes (Broecker et al., 1985, doi:10.1038/315021a0), as are shifts in the concentrations of atmospheric greenhouse gases (Broecker, 1994, doi:10.1038/372421a0). The response of the climate system to these two influences is fundamentally different: slowing of thermohaline overturn in the North Atlantic Ocean is expected to decrease northward heat transport by the ocean and to induce warming of the tropical Atlantic (Crowley, 1992, doi:10.1029/92PA01058; Manabe and Stouffer, 1997, doi:10.1029/96PA03932), whereas atmospheric greenhouse forcing should cause roughly synchronous global temperature changes (Manabe et al., 1991, doi:10.1175/1520-0442(1991)004<0785:TROACO>2.0.CO;2). So these two mechanisms of climate change should be distinguishable by the timing of surface-water temperature variations relative to changes in deep-water circulation. Here we present a high-temporal-resolution record of sea surface temperatures from the western tropical North Atlantic Ocean which spans the past 29,000 years, derived from measurements of temperature-sensitive alkenone unsaturation in sedimentary organic matter. We find significant warming is documented for Heinrich event H1 (16,900-15,400 calendar years bp) and the Younger Dryas event (12,900-11,600 cal. yr bp), which were periods of intense cooling in the northern North Atlantic. Temperature changes in the tropical and high-latitude North Atlantic are out of phase, suggesting that the thermohaline circulation was the important trigger for these rapid climate changes.