The effects of growth phase and salinity on the hydrogen isotopic composition of alkenones produced by coastal haptophyte algae


Autoria(s): Chivall, David; M'Boule, Daniela; Sinke-Schoen, Daniëlle; Sinninghe Damsté, Jaap S; Schouten, Stefan; van der Meer, Marcel TJ
Data(s)

05/05/2014

Resumo

The isotopic fractionation of hydrogen during the biosynthesis of alkenones produced by marine haptophyte algae has been shown to depend on salinity and, as such, the hydrogen isotopic composition of alkenones is emerging as a palaeosalinity proxy. The relationship between fractionation and salinity has previously only been determined during exponential growth, whilst it is not yet known in which growth phases natural haptophyte populations predominantly exist. We have therefore determined the relationship between the fractionation factor, alpha alkenones-water, and salinity for C37 alkenones produced in different growth phases of batch cultures of the major alkenone-producing coastal haptophytes Isochrysis galbana (strain CCMP 1323) and Chrysotila lamellosa (strain CCMP 1307) over a range in salinity from ca. 10 to ca. 35. alpha alkenones-water was similar in both species, ranging over 0.841-0.900 for I. galbana and 0.838-0.865 for C. lamellosa. A strong (0.85 <= R**2 <= 0.97; p < 0.0001) relationship between salinity and fractionation factor was observed in both species at all growth phases investigated. This suggests that alkenone dD has the potential to be used as a salinity proxy in coastal areas where haptophyte communities are dominated by these coastal species. However, there was a marked difference in the sensitivity of alpha alkenones-water to salinity between different growth phases: in the exponential growth phase of I. galbana, alpha alkenones-water increased by 0.0019 per salinity unit (S 1), but was less sensitive at 0.0010 S 1 and 0.0008 S 1 during the stationary and decline phases, respectively. Similarly, in C. lamellosa alpha alkenones-water increased by 0.0010 S 1 in the early stationary phase and by 0.0008 S 1 during the late stationary phase. Assuming the shift in sensitivity of alpha alkenones-water to salinity observed at the end of exponential growth in I. galbana is similar in other alkenone-producing species, the predominant growth phase of natural populations of haptophytes will affect the sensitivity of the alkenone salinity proxy. The proxy is likely to be most sensitive to salinity when alkenones are produced in a state similar to exponential growth.

Formato

text/tab-separated-values, 1613 data points

Identificador

https://doi.pangaea.de/10.1594/PANGAEA.832256

doi:10.1594/PANGAEA.832256

Idioma(s)

en

Publicador

PANGAEA

Direitos

CC-BY: Creative Commons Attribution 3.0 Unported

Access constraints: unrestricted

Fonte

Supplement to: Chivall, David; M'Boule, Daniela; Sinke-Schoen, Daniëlle; Sinninghe Damsté, Jaap S; Schouten, Stefan; van der Meer, Marcel TJ (2014): The effects of growth phase and salinity on the hydrogen isotopic composition of alkenones produced by coastal haptophyte algae. Geochimica et Cosmochimica Acta, 140, 381-390, doi:10.1016/j.gca.2014.05.043

Palavras-Chave #Conductivity meter VWR EC300; delta Deuterium, Alkenone, C37; delta Deuterium, standard deviation; delta Deuterium, water; Fractionation factor; Gas chromatography - thermal conversion - isotope ratio monitoring mass spectome; Growth phase; Incubation duration; Laboratory code/label; Salinity; Species; Strain; Temperature, water; Uncertainty
Tipo

Dataset